模块化木结构的数值与试验研究

S. Ormarsson, J. Vessby, M. Johansson, L. Kua
{"title":"模块化木结构的数值与试验研究","authors":"S. Ormarsson, J. Vessby, M. Johansson, L. Kua","doi":"10.29173/MOCS128","DOIUrl":null,"url":null,"abstract":"Building with prefabricated light-frame volume modules is a prevalent and innovative construction method for low and mid-rise timber buildings. Compared to traditionally site-built constructions this method is very advantageous due to its high prefabrication level and the fast on-site assembly of the modules. The focus of this project is to study and optimise the global shear stiffness of the volume modules and to secure a large enough shear and uplift stiffness of the mechanical (or friction based) connections between the modules. Some companies assume that the friction between the modules is sufficient to transfer the wind stabilization forces down through the entire building. Regarding structural safety, connection design is an important task that needs to be numerically studied and experimentally verified. The paper presents numerical and experimental results obtained from two ongoing research projects concerning modular-based timber buildings in Sweden. The final aim of this work is to develop an efficient three dimensional finite-element model to analyse both the global and detailed structural behaviour of these types of buildings. To study the overall shear stiffness of the volume modules, eight different test-modules are to be tested. The test results will be used to calibrate the numerical model.","PeriodicalId":422911,"journal":{"name":"Modular and Offsite Construction (MOC) Summit Proceedings","volume":"85 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical and Experimental Study on Modular-Based Timber Structures\",\"authors\":\"S. Ormarsson, J. Vessby, M. Johansson, L. Kua\",\"doi\":\"10.29173/MOCS128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building with prefabricated light-frame volume modules is a prevalent and innovative construction method for low and mid-rise timber buildings. Compared to traditionally site-built constructions this method is very advantageous due to its high prefabrication level and the fast on-site assembly of the modules. The focus of this project is to study and optimise the global shear stiffness of the volume modules and to secure a large enough shear and uplift stiffness of the mechanical (or friction based) connections between the modules. Some companies assume that the friction between the modules is sufficient to transfer the wind stabilization forces down through the entire building. Regarding structural safety, connection design is an important task that needs to be numerically studied and experimentally verified. The paper presents numerical and experimental results obtained from two ongoing research projects concerning modular-based timber buildings in Sweden. The final aim of this work is to develop an efficient three dimensional finite-element model to analyse both the global and detailed structural behaviour of these types of buildings. To study the overall shear stiffness of the volume modules, eight different test-modules are to be tested. The test results will be used to calibrate the numerical model.\",\"PeriodicalId\":422911,\"journal\":{\"name\":\"Modular and Offsite Construction (MOC) Summit Proceedings\",\"volume\":\"85 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modular and Offsite Construction (MOC) Summit Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29173/MOCS128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modular and Offsite Construction (MOC) Summit Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29173/MOCS128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

预制轻框架体模块建筑是一种普遍和创新的建筑方法,用于中低层木结构建筑。与传统的现场建造相比,这种方法具有很高的预制水平和快速的现场组装模块的优势。该项目的重点是研究和优化体积模块的整体剪切刚度,并确保模块之间的机械(或摩擦)连接具有足够大的剪切和提升刚度。一些公司认为,模块之间的摩擦足以将风稳定力传递到整个建筑。在结构安全方面,连接设计是一项重要的工作,需要进行数值研究和实验验证。本文介绍了两个正在进行的关于瑞典模块化木结构建筑的研究项目的数值和实验结果。这项工作的最终目的是开发一个有效的三维有限元模型来分析这些类型的建筑物的整体和详细的结构行为。为了研究体积模块的整体抗剪刚度,对8个不同的测试模块进行了测试。试验结果将用于校正数值模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and Experimental Study on Modular-Based Timber Structures
Building with prefabricated light-frame volume modules is a prevalent and innovative construction method for low and mid-rise timber buildings. Compared to traditionally site-built constructions this method is very advantageous due to its high prefabrication level and the fast on-site assembly of the modules. The focus of this project is to study and optimise the global shear stiffness of the volume modules and to secure a large enough shear and uplift stiffness of the mechanical (or friction based) connections between the modules. Some companies assume that the friction between the modules is sufficient to transfer the wind stabilization forces down through the entire building. Regarding structural safety, connection design is an important task that needs to be numerically studied and experimentally verified. The paper presents numerical and experimental results obtained from two ongoing research projects concerning modular-based timber buildings in Sweden. The final aim of this work is to develop an efficient three dimensional finite-element model to analyse both the global and detailed structural behaviour of these types of buildings. To study the overall shear stiffness of the volume modules, eight different test-modules are to be tested. The test results will be used to calibrate the numerical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信