{"title":"高效英韩机器翻译的词性概率确定","authors":"Sung-Dong Kim, Il Kim","doi":"10.3745/KIPSTB.2010.17B.6.459","DOIUrl":null,"url":null,"abstract":"Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Part-Of-Speech Determination for Efficient English-Korean Machine Translation\",\"authors\":\"Sung-Dong Kim, Il Kim\",\"doi\":\"10.3745/KIPSTB.2010.17B.6.459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2010.17B.6.459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2010.17B.6.459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Part-Of-Speech Determination for Efficient English-Korean Machine Translation
Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.