高效英韩机器翻译的词性概率确定

Sung-Dong Kim, Il Kim
{"title":"高效英韩机器翻译的词性概率确定","authors":"Sung-Dong Kim, Il Kim","doi":"10.3745/KIPSTB.2010.17B.6.459","DOIUrl":null,"url":null,"abstract":"Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Part-Of-Speech Determination for Efficient English-Korean Machine Translation\",\"authors\":\"Sung-Dong Kim, Il Kim\",\"doi\":\"10.3745/KIPSTB.2010.17B.6.459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2010.17B.6.459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2010.17B.6.459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然语言处理中存在一些歧义问题,英韩机器翻译尤其包含了在翻译的每个步骤中需要解决的歧义问题。本文主要研究解决英语单词词性歧义问题,以提高英语分析的效率,为开发实用的英韩机器翻译系统做出努力。为了提高英语分析的效率,词性确定必须与机器翻译系统相结合,快速准确。本文提出了词性确定的概率模型。我们使用Penn树库语料库构建概率模型。在实验中,我们展示了词性确定模型的性能,并通过提出的词性确定方法提高了机器翻译系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Part-Of-Speech Determination for Efficient English-Korean Machine Translation
Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信