快速图像滤波通过自适应噪声检测

Tuan-Anh Nguyen, Jong-Geun Oh, Min-Cheol Hong
{"title":"快速图像滤波通过自适应噪声检测","authors":"Tuan-Anh Nguyen, Jong-Geun Oh, Min-Cheol Hong","doi":"10.1145/2663761.2664228","DOIUrl":null,"url":null,"abstract":"This work develops a spatially white Gaussian noise detection algorithm for blind image filtering. First, the noise component as well as the noise level are estimated by using the local statistics from an observed degraded image. Then, the first order Markov Random Field is effectively used to control the noise detection performance. Finally, pixels, the adaptive weighted filter with the resizable patches is adopted to restore the detected noisy pixels. Numerous simulations have been conducted to demonstrate the effectiveness of the proposed method.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast image filtering via adaptive noise detection\",\"authors\":\"Tuan-Anh Nguyen, Jong-Geun Oh, Min-Cheol Hong\",\"doi\":\"10.1145/2663761.2664228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops a spatially white Gaussian noise detection algorithm for blind image filtering. First, the noise component as well as the noise level are estimated by using the local statistics from an observed degraded image. Then, the first order Markov Random Field is effectively used to control the noise detection performance. Finally, pixels, the adaptive weighted filter with the resizable patches is adopted to restore the detected noisy pixels. Numerous simulations have been conducted to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":120340,\"journal\":{\"name\":\"Research in Adaptive and Convergent Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663761.2664228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663761.2664228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于图像盲滤波的空间高斯白噪声检测算法。首先,利用观测到的退化图像的局部统计量估计噪声分量和噪声电平;然后,利用一阶马尔可夫随机场有效地控制噪声检测性能。最后,在像素方面,采用可调整大小的自适应加权滤波器对检测到的噪声像素进行恢复。大量的仿真实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast image filtering via adaptive noise detection
This work develops a spatially white Gaussian noise detection algorithm for blind image filtering. First, the noise component as well as the noise level are estimated by using the local statistics from an observed degraded image. Then, the first order Markov Random Field is effectively used to control the noise detection performance. Finally, pixels, the adaptive weighted filter with the resizable patches is adopted to restore the detected noisy pixels. Numerous simulations have been conducted to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信