Xutao Li, G. Cong, Xiaoli Li, T. Pham, S. Krishnaswamy
{"title":"Rank-GeoFM:一种基于地理因子排序的兴趣点推荐方法","authors":"Xutao Li, G. Cong, Xiaoli Li, T. Pham, S. Krishnaswamy","doi":"10.1145/2766462.2767722","DOIUrl":null,"url":null,"abstract":"With the rapid growth of location-based social networks, Point of Interest (POI) recommendation has become an important research problem. However, the scarcity of the check-in data, a type of implicit feedback data, poses a severe challenge for existing POI recommendation methods. Moreover, different types of context information about POIs are available and how to leverage them becomes another challenge. In this paper, we propose a ranking based geographical factorization method, called Rank-GeoFM, for POI recommendation, which addresses the two challenges. In the proposed model, we consider that the check-in frequency characterizes users' visiting preference and learn the factorization by ranking the POIs correctly. In our model, POIs both with and without check-ins will contribute to learning the ranking and thus the data sparsity problem can be alleviated. In addition, our model can easily incorporate different types of context information, such as the geographical influence and temporal influence. We propose a stochastic gradient descent based algorithm to learn the factorization. Experiments on publicly available datasets under both user-POI setting and user-time-POI setting have been conducted to test the effectiveness of the proposed method. Experimental results under both settings show that the proposed method outperforms the state-of-the-art methods significantly in terms of recommendation accuracy.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"325","resultStr":"{\"title\":\"Rank-GeoFM: A Ranking based Geographical Factorization Method for Point of Interest Recommendation\",\"authors\":\"Xutao Li, G. Cong, Xiaoli Li, T. Pham, S. Krishnaswamy\",\"doi\":\"10.1145/2766462.2767722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of location-based social networks, Point of Interest (POI) recommendation has become an important research problem. However, the scarcity of the check-in data, a type of implicit feedback data, poses a severe challenge for existing POI recommendation methods. Moreover, different types of context information about POIs are available and how to leverage them becomes another challenge. In this paper, we propose a ranking based geographical factorization method, called Rank-GeoFM, for POI recommendation, which addresses the two challenges. In the proposed model, we consider that the check-in frequency characterizes users' visiting preference and learn the factorization by ranking the POIs correctly. In our model, POIs both with and without check-ins will contribute to learning the ranking and thus the data sparsity problem can be alleviated. In addition, our model can easily incorporate different types of context information, such as the geographical influence and temporal influence. We propose a stochastic gradient descent based algorithm to learn the factorization. Experiments on publicly available datasets under both user-POI setting and user-time-POI setting have been conducted to test the effectiveness of the proposed method. Experimental results under both settings show that the proposed method outperforms the state-of-the-art methods significantly in terms of recommendation accuracy.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"325\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rank-GeoFM: A Ranking based Geographical Factorization Method for Point of Interest Recommendation
With the rapid growth of location-based social networks, Point of Interest (POI) recommendation has become an important research problem. However, the scarcity of the check-in data, a type of implicit feedback data, poses a severe challenge for existing POI recommendation methods. Moreover, different types of context information about POIs are available and how to leverage them becomes another challenge. In this paper, we propose a ranking based geographical factorization method, called Rank-GeoFM, for POI recommendation, which addresses the two challenges. In the proposed model, we consider that the check-in frequency characterizes users' visiting preference and learn the factorization by ranking the POIs correctly. In our model, POIs both with and without check-ins will contribute to learning the ranking and thus the data sparsity problem can be alleviated. In addition, our model can easily incorporate different types of context information, such as the geographical influence and temporal influence. We propose a stochastic gradient descent based algorithm to learn the factorization. Experiments on publicly available datasets under both user-POI setting and user-time-POI setting have been conducted to test the effectiveness of the proposed method. Experimental results under both settings show that the proposed method outperforms the state-of-the-art methods significantly in terms of recommendation accuracy.