用于搜索图像数据库中语义概念的Web图像学习

S. Hoi, Michael R. Lyu
{"title":"用于搜索图像数据库中语义概念的Web图像学习","authors":"S. Hoi, Michael R. Lyu","doi":"10.1145/1013367.1013498","DOIUrl":null,"url":null,"abstract":"Without textual descriptions or label information of images, searching semantic concepts in image databases is still a very challenging task. While automatic annotation techniques are yet along way off, we can seek other alternative techniques to solve this difficult issue. In this paper, we propose to learn Web images for searching the semantic concepts in large image databases. To formulate effective algorithms, we suggest to engage the support vector machines for attacking the problem. We evaluate our algorithm in a large image database and demonstrate the preliminary yet promising results.","PeriodicalId":409891,"journal":{"name":"WWW Alt. '04","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Web image learning for searching semantic concepts in image databases\",\"authors\":\"S. Hoi, Michael R. Lyu\",\"doi\":\"10.1145/1013367.1013498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without textual descriptions or label information of images, searching semantic concepts in image databases is still a very challenging task. While automatic annotation techniques are yet along way off, we can seek other alternative techniques to solve this difficult issue. In this paper, we propose to learn Web images for searching the semantic concepts in large image databases. To formulate effective algorithms, we suggest to engage the support vector machines for attacking the problem. We evaluate our algorithm in a large image database and demonstrate the preliminary yet promising results.\",\"PeriodicalId\":409891,\"journal\":{\"name\":\"WWW Alt. '04\",\"volume\":\"248 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WWW Alt. '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013367.1013498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WWW Alt. '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013367.1013498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

由于没有图像的文本描述或标签信息,在图像数据库中搜索语义概念仍然是一项非常具有挑战性的任务。虽然自动注释技术还有很长的路要走,但我们可以寻找其他替代技术来解决这个难题。在本文中,我们提出学习Web图像来搜索大型图像数据库中的语义概念。为了制定有效的算法,我们建议使用支持向量机来解决问题。我们在一个大型图像数据库中评估了我们的算法,并展示了初步但有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web image learning for searching semantic concepts in image databases
Without textual descriptions or label information of images, searching semantic concepts in image databases is still a very challenging task. While automatic annotation techniques are yet along way off, we can seek other alternative techniques to solve this difficult issue. In this paper, we propose to learn Web images for searching the semantic concepts in large image databases. To formulate effective algorithms, we suggest to engage the support vector machines for attacking the problem. We evaluate our algorithm in a large image database and demonstrate the preliminary yet promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信