社交媒体地理定位在VarDial 2020

Fernando Benites, M. Hürlimann, Pius von Däniken, Mark Cieliebak
{"title":"社交媒体地理定位在VarDial 2020","authors":"Fernando Benites, M. Hürlimann, Pius von Däniken, Mark Cieliebak","doi":"10.21256/ZHAW-21551","DOIUrl":null,"url":null,"abstract":"We describe our approaches for the Social Media Geolocation (SMG) task at the VarDial Evaluation Campaign 2020. The goal was to predict geographical location (latitudes and longitudes) given an input text. There were three subtasks corresponding to German-speaking Switzerland (CH), Germany and Austria (DE-AT), and Croatia, Bosnia and Herzegovina, Montenegro and Serbia (BCMS). We submitted solutions to all subtasks but focused our development efforts on the CH subtask, where we achieved third place out of 16 submissions with a median distance of 15.93 km and had the best result of 14 unconstrained systems. In the DE-AT subtask, we ranked sixth out of ten submissions (fourth of 8 unconstrained systems) and for BCMS we achieved fourth place out of 13 submissions (second of 11 unconstrained systems).","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ZHAW-InIT - Social Media Geolocation at VarDial 2020\",\"authors\":\"Fernando Benites, M. Hürlimann, Pius von Däniken, Mark Cieliebak\",\"doi\":\"10.21256/ZHAW-21551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our approaches for the Social Media Geolocation (SMG) task at the VarDial Evaluation Campaign 2020. The goal was to predict geographical location (latitudes and longitudes) given an input text. There were three subtasks corresponding to German-speaking Switzerland (CH), Germany and Austria (DE-AT), and Croatia, Bosnia and Herzegovina, Montenegro and Serbia (BCMS). We submitted solutions to all subtasks but focused our development efforts on the CH subtask, where we achieved third place out of 16 submissions with a median distance of 15.93 km and had the best result of 14 unconstrained systems. In the DE-AT subtask, we ranked sixth out of ten submissions (fourth of 8 unconstrained systems) and for BCMS we achieved fourth place out of 13 submissions (second of 11 unconstrained systems).\",\"PeriodicalId\":167439,\"journal\":{\"name\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21256/ZHAW-21551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on NLP for Similar Languages, Varieties and Dialects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21256/ZHAW-21551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们在VarDial评估活动2020中描述了我们对社交媒体地理定位(SMG)任务的方法。目标是在给定输入文本的情况下预测地理位置(经纬度)。有三个子任务对应于德语区瑞士、德国和奥地利以及克罗地亚、波斯尼亚-黑塞哥维那、黑山和塞尔维亚。我们提交了所有子任务的解决方案,但将开发精力集中在CH子任务上,我们在16个提交的解决方案中获得了第三名,中位距离为15.93公里,并且在14个无约束系统中获得了最佳结果。在DE-AT子任务中,我们在10个提交中排名第六(在8个无约束系统中排名第四),在BCMS中,我们在13个提交中排名第四(在11个无约束系统中排名第二)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZHAW-InIT - Social Media Geolocation at VarDial 2020
We describe our approaches for the Social Media Geolocation (SMG) task at the VarDial Evaluation Campaign 2020. The goal was to predict geographical location (latitudes and longitudes) given an input text. There were three subtasks corresponding to German-speaking Switzerland (CH), Germany and Austria (DE-AT), and Croatia, Bosnia and Herzegovina, Montenegro and Serbia (BCMS). We submitted solutions to all subtasks but focused our development efforts on the CH subtask, where we achieved third place out of 16 submissions with a median distance of 15.93 km and had the best result of 14 unconstrained systems. In the DE-AT subtask, we ranked sixth out of ten submissions (fourth of 8 unconstrained systems) and for BCMS we achieved fourth place out of 13 submissions (second of 11 unconstrained systems).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信