{"title":"内存分配和高阶函数","authors":"O. Danvy","doi":"10.1145/29650.29676","DOIUrl":null,"url":null,"abstract":"This paper presents a constant-time marking-collecting algorithm to efficiently implement recursion with a general heap memory rather than with a vectorial stack, in a context of frequent captures of continuations. It has been seen to reduce the 80% garbage collection overhead to less than 5% on average.The algorithm has been built into a virtual machine to efficiently implement at the assembly level the Actor language PLASMA, an Actor-oriented version of PROLOG and a variant of SCHEME, currently in use on 8086, 68000 and Vax.The rationale to use the heap memory is that continuations are available via a single pointer in a unified memory and can be shared optimally when recurrently captured, which is simply impossible using a strategy based on stack recopy. Further, non-captured continuations can be incrementally garbage collected on the fly.Part I describes the elementary recursive instructions of the virtual machine. Part II presents and proves the marking-collecting strategy. Part III safely generalizes the transformation \"call + return = branch\" in a way compatible with the possible capture of the current continuation. An appendix relates its integration in the Virtual Scheme Machine supporting Scheme 84.","PeriodicalId":414056,"journal":{"name":"SIGPLAN Conferences and Workshops","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Memory allocation and higher-order functions\",\"authors\":\"O. Danvy\",\"doi\":\"10.1145/29650.29676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a constant-time marking-collecting algorithm to efficiently implement recursion with a general heap memory rather than with a vectorial stack, in a context of frequent captures of continuations. It has been seen to reduce the 80% garbage collection overhead to less than 5% on average.The algorithm has been built into a virtual machine to efficiently implement at the assembly level the Actor language PLASMA, an Actor-oriented version of PROLOG and a variant of SCHEME, currently in use on 8086, 68000 and Vax.The rationale to use the heap memory is that continuations are available via a single pointer in a unified memory and can be shared optimally when recurrently captured, which is simply impossible using a strategy based on stack recopy. Further, non-captured continuations can be incrementally garbage collected on the fly.Part I describes the elementary recursive instructions of the virtual machine. Part II presents and proves the marking-collecting strategy. Part III safely generalizes the transformation \\\"call + return = branch\\\" in a way compatible with the possible capture of the current continuation. An appendix relates its integration in the Virtual Scheme Machine supporting Scheme 84.\",\"PeriodicalId\":414056,\"journal\":{\"name\":\"SIGPLAN Conferences and Workshops\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGPLAN Conferences and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/29650.29676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGPLAN Conferences and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/29650.29676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a constant-time marking-collecting algorithm to efficiently implement recursion with a general heap memory rather than with a vectorial stack, in a context of frequent captures of continuations. It has been seen to reduce the 80% garbage collection overhead to less than 5% on average.The algorithm has been built into a virtual machine to efficiently implement at the assembly level the Actor language PLASMA, an Actor-oriented version of PROLOG and a variant of SCHEME, currently in use on 8086, 68000 and Vax.The rationale to use the heap memory is that continuations are available via a single pointer in a unified memory and can be shared optimally when recurrently captured, which is simply impossible using a strategy based on stack recopy. Further, non-captured continuations can be incrementally garbage collected on the fly.Part I describes the elementary recursive instructions of the virtual machine. Part II presents and proves the marking-collecting strategy. Part III safely generalizes the transformation "call + return = branch" in a way compatible with the possible capture of the current continuation. An appendix relates its integration in the Virtual Scheme Machine supporting Scheme 84.