{"title":"论权结构的构造及其幂等扩展","authors":"M. Bondarko, V. Sosnilo","doi":"10.4310/HHA.2018.V20.N1.A3","DOIUrl":null,"url":null,"abstract":"We describe a new method for constructing a weight structure $w$ on a triangulated category $C$. \nFor a given $C$ and $w$ it allow us to give a fairly comprehensive (and new) description of those triangulated categories consisting of retracts of objects of $C$ (i.e., of subcategories of the Karoubi envelope of $C$ that contain $C$; we call them idempotent extensions of $C$) such that $w$ extends to them. In particular, any bounded above or below $w$ extends to any idempotent extension of $C$. We also discuss the applications of our results to certain triangulated categories of (\"relative\") motives.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"On constructing weight structures and extending them to idempotent extensions\",\"authors\":\"M. Bondarko, V. Sosnilo\",\"doi\":\"10.4310/HHA.2018.V20.N1.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new method for constructing a weight structure $w$ on a triangulated category $C$. \\nFor a given $C$ and $w$ it allow us to give a fairly comprehensive (and new) description of those triangulated categories consisting of retracts of objects of $C$ (i.e., of subcategories of the Karoubi envelope of $C$ that contain $C$; we call them idempotent extensions of $C$) such that $w$ extends to them. In particular, any bounded above or below $w$ extends to any idempotent extension of $C$. We also discuss the applications of our results to certain triangulated categories of (\\\"relative\\\") motives.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2018.V20.N1.A3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2018.V20.N1.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On constructing weight structures and extending them to idempotent extensions
We describe a new method for constructing a weight structure $w$ on a triangulated category $C$.
For a given $C$ and $w$ it allow us to give a fairly comprehensive (and new) description of those triangulated categories consisting of retracts of objects of $C$ (i.e., of subcategories of the Karoubi envelope of $C$ that contain $C$; we call them idempotent extensions of $C$) such that $w$ extends to them. In particular, any bounded above or below $w$ extends to any idempotent extension of $C$. We also discuss the applications of our results to certain triangulated categories of ("relative") motives.