Feida Zhu, Yongfeng Zhang, N. Yorke-Smith, G. Guo, Xu Chen
{"title":"IFUP:多维信息融合用户建模和个性化研讨会","authors":"Feida Zhu, Yongfeng Zhang, N. Yorke-Smith, G. Guo, Xu Chen","doi":"10.1145/3159652.3160592","DOIUrl":null,"url":null,"abstract":"Recommendation system has became an important component in many real applications, ranging from e-commerce, music app to video-sharing site and on-line book store. The key of a successful recommendation system lies in the accurate user/item profiling. With the advent of web 2.0, quite a lot of multimodal information has been accumulated, which provides us with the opportunity to profile users in a more comprehensive manner. However, directly integrating multimodal information into recommendation system is not a trivial task, because they may be either homogenous or heterogeneous, which requires more advanced method for both fusion and alignment. This workshop aims to provide a platform for discussing the challenges and corresponding innovative approaches in fusing multi-dimensional information for user modeling and recommender systems. We hope more advanced technologies can be proposed or inspired, and also we hope that the direction of integrating different types of information can catch much more attention in both academic and industry.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"IFUP: Workshop on Multi-dimensional Information Fusion for User Modeling and Personalization\",\"authors\":\"Feida Zhu, Yongfeng Zhang, N. Yorke-Smith, G. Guo, Xu Chen\",\"doi\":\"10.1145/3159652.3160592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation system has became an important component in many real applications, ranging from e-commerce, music app to video-sharing site and on-line book store. The key of a successful recommendation system lies in the accurate user/item profiling. With the advent of web 2.0, quite a lot of multimodal information has been accumulated, which provides us with the opportunity to profile users in a more comprehensive manner. However, directly integrating multimodal information into recommendation system is not a trivial task, because they may be either homogenous or heterogeneous, which requires more advanced method for both fusion and alignment. This workshop aims to provide a platform for discussing the challenges and corresponding innovative approaches in fusing multi-dimensional information for user modeling and recommender systems. We hope more advanced technologies can be proposed or inspired, and also we hope that the direction of integrating different types of information can catch much more attention in both academic and industry.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3160592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3160592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IFUP: Workshop on Multi-dimensional Information Fusion for User Modeling and Personalization
Recommendation system has became an important component in many real applications, ranging from e-commerce, music app to video-sharing site and on-line book store. The key of a successful recommendation system lies in the accurate user/item profiling. With the advent of web 2.0, quite a lot of multimodal information has been accumulated, which provides us with the opportunity to profile users in a more comprehensive manner. However, directly integrating multimodal information into recommendation system is not a trivial task, because they may be either homogenous or heterogeneous, which requires more advanced method for both fusion and alignment. This workshop aims to provide a platform for discussing the challenges and corresponding innovative approaches in fusing multi-dimensional information for user modeling and recommender systems. We hope more advanced technologies can be proposed or inspired, and also we hope that the direction of integrating different types of information can catch much more attention in both academic and industry.