SAR图像压缩

F. A. Sakarya, S. Emek
{"title":"SAR图像压缩","authors":"F. A. Sakarya, S. Emek","doi":"10.1109/ACSSC.1996.599066","DOIUrl":null,"url":null,"abstract":"Classical image compression algorithms such as discrete cosine transform (DCT), Karhunen-Loeve transform (KLT), and subband decomposition using wavelet filters (SDWF) are well-understood for optical imaging. However, their applications to synthetic aperture radar (SAR) images have not been well-studied. This paper applies DCT, KLT and SDWF to raw SAR images after appropriate preprocessing, and compares the results based on three performance criteria, namely energy gain (E/sub C/), transform coding gain (G/sub T/), and peak-to-peak signal-to-noise ratio (PSNR).","PeriodicalId":270729,"journal":{"name":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SAR image compression\",\"authors\":\"F. A. Sakarya, S. Emek\",\"doi\":\"10.1109/ACSSC.1996.599066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical image compression algorithms such as discrete cosine transform (DCT), Karhunen-Loeve transform (KLT), and subband decomposition using wavelet filters (SDWF) are well-understood for optical imaging. However, their applications to synthetic aperture radar (SAR) images have not been well-studied. This paper applies DCT, KLT and SDWF to raw SAR images after appropriate preprocessing, and compares the results based on three performance criteria, namely energy gain (E/sub C/), transform coding gain (G/sub T/), and peak-to-peak signal-to-noise ratio (PSNR).\",\"PeriodicalId\":270729,\"journal\":{\"name\":\"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1996.599066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1996.599066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

经典的图像压缩算法,如离散余弦变换(DCT), Karhunen-Loeve变换(KLT),以及使用小波滤波器的子带分解(SDWF)对于光学成像是很好的理解。然而,它们在合成孔径雷达(SAR)图像中的应用还没有得到很好的研究。本文将DCT、KLT和SDWF应用于经过适当预处理的原始SAR图像,并根据能量增益(E/sub C/)、变换编码增益(G/sub T/)和峰峰信噪比(PSNR)三个性能指标对结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR image compression
Classical image compression algorithms such as discrete cosine transform (DCT), Karhunen-Loeve transform (KLT), and subband decomposition using wavelet filters (SDWF) are well-understood for optical imaging. However, their applications to synthetic aperture radar (SAR) images have not been well-studied. This paper applies DCT, KLT and SDWF to raw SAR images after appropriate preprocessing, and compares the results based on three performance criteria, namely energy gain (E/sub C/), transform coding gain (G/sub T/), and peak-to-peak signal-to-noise ratio (PSNR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信