基于PSO-LSSVM分类模型的石油岩性判别

Guojian Cheng, Ruihua Guo, Wenhai Wu
{"title":"基于PSO-LSSVM分类模型的石油岩性判别","authors":"Guojian Cheng, Ruihua Guo, Wenhai Wu","doi":"10.1109/ICCMS.2010.284","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm which combines Particle Swarm Optimization (PSO) with Least Squares Support Vector Machines (LSSVM) to identify lithology by using well logging data. First of all, PSO is used for optimizing the main parameters of LSSVM, and then by using the optimized parameters to obtain a better PSO-LSSVM classification model which can be used to identify lithology with logging data. Compared with the traditional SVM model based on cross-validation and a single hidden layer of BP neural network model, the new PSO-LSSVM method can accurately describe the nonlinear mapping relationship between the well logging data and the lithology categories. The experimental results show that a higher precise identification can be got and the automation of the algorithm can also be improved.","PeriodicalId":153175,"journal":{"name":"2010 Second International Conference on Computer Modeling and Simulation","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Petroleum Lithology Discrimination Based on PSO-LSSVM Classification Model\",\"authors\":\"Guojian Cheng, Ruihua Guo, Wenhai Wu\",\"doi\":\"10.1109/ICCMS.2010.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm which combines Particle Swarm Optimization (PSO) with Least Squares Support Vector Machines (LSSVM) to identify lithology by using well logging data. First of all, PSO is used for optimizing the main parameters of LSSVM, and then by using the optimized parameters to obtain a better PSO-LSSVM classification model which can be used to identify lithology with logging data. Compared with the traditional SVM model based on cross-validation and a single hidden layer of BP neural network model, the new PSO-LSSVM method can accurately describe the nonlinear mapping relationship between the well logging data and the lithology categories. The experimental results show that a higher precise identification can be got and the automation of the algorithm can also be improved.\",\"PeriodicalId\":153175,\"journal\":{\"name\":\"2010 Second International Conference on Computer Modeling and Simulation\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMS.2010.284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2010.284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种结合粒子群算法(PSO)和最小二乘支持向量机(LSSVM)的测井资料岩性识别算法。首先利用粒子群算法对LSSVM的主要参数进行优化,然后利用优化后的参数得到一个更好的PSO-LSSVM分类模型,该模型可用于利用测井资料进行岩性识别。与传统的基于交叉验证的支持向量机模型和单隐层BP神经网络模型相比,PSO-LSSVM方法能够准确地描述测井数据与岩性类别之间的非线性映射关系。实验结果表明,该方法可以提高识别精度,提高算法的自动化程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petroleum Lithology Discrimination Based on PSO-LSSVM Classification Model
This paper proposes an algorithm which combines Particle Swarm Optimization (PSO) with Least Squares Support Vector Machines (LSSVM) to identify lithology by using well logging data. First of all, PSO is used for optimizing the main parameters of LSSVM, and then by using the optimized parameters to obtain a better PSO-LSSVM classification model which can be used to identify lithology with logging data. Compared with the traditional SVM model based on cross-validation and a single hidden layer of BP neural network model, the new PSO-LSSVM method can accurately describe the nonlinear mapping relationship between the well logging data and the lithology categories. The experimental results show that a higher precise identification can be got and the automation of the algorithm can also be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信