James Smith, Bradely Benefiel, S. Evans, C. C. Merriman, Kennth Johnson, T. Roosendaal
{"title":"用剥离试验确证激光冲击界面表征","authors":"James Smith, Bradely Benefiel, S. Evans, C. C. Merriman, Kennth Johnson, T. Roosendaal","doi":"10.32548/rs.2022.037","DOIUrl":null,"url":null,"abstract":"Currently, there is no established testing technique that can characterize the aluminum-cladding interface of fuel plates. The Laser Shock and Peel test methods are two interface characterization techniques that are being developed at Idaho National Laboratory and Pacific Northwest National Laboratory to measure the bond strength of the cladding-cladding interface. The commercial fabrication process to bond two aluminum substrates together for a new nuclear plate fuel system being developed for U.S. research reactors is undergoing a scale-up process. The interface strengths within the resulting plates need to be characterized to ensure the production process will produce claddings that will contain the swelling of the nuclear fuel foil and the resulting fission gasses. , respectively, to perform these measurements. In absence of a standard technique, The goal of our work is to corroborate the two characterization techniques with data from a number of samples with variable bond strength.","PeriodicalId":367504,"journal":{"name":"ASNT 30th Research Symposium Conference Proceedings","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corroborating Laser Shock Interface Characterization with Peel Testing\",\"authors\":\"James Smith, Bradely Benefiel, S. Evans, C. C. Merriman, Kennth Johnson, T. Roosendaal\",\"doi\":\"10.32548/rs.2022.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, there is no established testing technique that can characterize the aluminum-cladding interface of fuel plates. The Laser Shock and Peel test methods are two interface characterization techniques that are being developed at Idaho National Laboratory and Pacific Northwest National Laboratory to measure the bond strength of the cladding-cladding interface. The commercial fabrication process to bond two aluminum substrates together for a new nuclear plate fuel system being developed for U.S. research reactors is undergoing a scale-up process. The interface strengths within the resulting plates need to be characterized to ensure the production process will produce claddings that will contain the swelling of the nuclear fuel foil and the resulting fission gasses. , respectively, to perform these measurements. In absence of a standard technique, The goal of our work is to corroborate the two characterization techniques with data from a number of samples with variable bond strength.\",\"PeriodicalId\":367504,\"journal\":{\"name\":\"ASNT 30th Research Symposium Conference Proceedings\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASNT 30th Research Symposium Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32548/rs.2022.037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASNT 30th Research Symposium Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32548/rs.2022.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Corroborating Laser Shock Interface Characterization with Peel Testing
Currently, there is no established testing technique that can characterize the aluminum-cladding interface of fuel plates. The Laser Shock and Peel test methods are two interface characterization techniques that are being developed at Idaho National Laboratory and Pacific Northwest National Laboratory to measure the bond strength of the cladding-cladding interface. The commercial fabrication process to bond two aluminum substrates together for a new nuclear plate fuel system being developed for U.S. research reactors is undergoing a scale-up process. The interface strengths within the resulting plates need to be characterized to ensure the production process will produce claddings that will contain the swelling of the nuclear fuel foil and the resulting fission gasses. , respectively, to perform these measurements. In absence of a standard technique, The goal of our work is to corroborate the two characterization techniques with data from a number of samples with variable bond strength.