动态MRI重建的自适应锁孔奇异值分解方法

Zhaolin Chen, Jingxin Zhang, K. K. Pang
{"title":"动态MRI重建的自适应锁孔奇异值分解方法","authors":"Zhaolin Chen, Jingxin Zhang, K. K. Pang","doi":"10.1109/ISSPA.2005.1580233","DOIUrl":null,"url":null,"abstract":"Keyhole Singular Value Decomposition (KSVD) method is known as one of the most commonly used methods for reduced encoding reconstruction of dynamic Magnetic Resonance Imaging (MRI). This paper provides a new enhanced version of this method, called Adaptive KSVD (AKSVD). Instead of original method’s direct duplication of unacquired data from the reference frame, the proposed method uses a temporal model based adaptive scheme to update the unacquired data in following frames, which better captures dynamical changes. The experiment results obtained from the simulated as well as real MRI data show that the proposed AKSVD method can produce images with much lower reconstruction error.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive keyhole SVD method for dynamic MRI reconstruction\",\"authors\":\"Zhaolin Chen, Jingxin Zhang, K. K. Pang\",\"doi\":\"10.1109/ISSPA.2005.1580233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keyhole Singular Value Decomposition (KSVD) method is known as one of the most commonly used methods for reduced encoding reconstruction of dynamic Magnetic Resonance Imaging (MRI). This paper provides a new enhanced version of this method, called Adaptive KSVD (AKSVD). Instead of original method’s direct duplication of unacquired data from the reference frame, the proposed method uses a temporal model based adaptive scheme to update the unacquired data in following frames, which better captures dynamical changes. The experiment results obtained from the simulated as well as real MRI data show that the proposed AKSVD method can produce images with much lower reconstruction error.\",\"PeriodicalId\":385337,\"journal\":{\"name\":\"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2005.1580233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1580233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

钥匙孔奇异值分解(KSVD)方法是动态磁共振成像(MRI)中最常用的简化编码重建方法之一。本文提出了该方法的一个新的增强版本,称为自适应KSVD (AKSVD)。该方法采用一种基于时间模型的自适应方法对后续帧中的未采集数据进行更新,以更好地捕捉动态变化,而不是直接复制参考帧中的未采集数据。仿真和真实MRI数据的实验结果表明,所提出的AKSVD方法可以产生具有较低重建误差的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive keyhole SVD method for dynamic MRI reconstruction
Keyhole Singular Value Decomposition (KSVD) method is known as one of the most commonly used methods for reduced encoding reconstruction of dynamic Magnetic Resonance Imaging (MRI). This paper provides a new enhanced version of this method, called Adaptive KSVD (AKSVD). Instead of original method’s direct duplication of unacquired data from the reference frame, the proposed method uses a temporal model based adaptive scheme to update the unacquired data in following frames, which better captures dynamical changes. The experiment results obtained from the simulated as well as real MRI data show that the proposed AKSVD method can produce images with much lower reconstruction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信