结合元启发式求解车问题

C. Pintea, Camelia Chira, D. Dumitrescu
{"title":"结合元启发式求解车问题","authors":"C. Pintea, Camelia Chira, D. Dumitrescu","doi":"10.1109/SYNASC.2006.25","DOIUrl":null,"url":null,"abstract":"The combination of various meta-heuristics to solve NP-hard problems has great potential to produce good results. Ant algorithms and multi-agent system are proposed to solve a chess problem. The problem is about how to place n rooks on a chessboard so that they are all mutually non-attacking. The introduced algorithms produce reasonable results and have several advantages. A combination between the two meta-heuristics is presented and some possible crossover improvements of the proposed algorithms are suggested","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Meta-Heuristics to Solve the Rook Problem\",\"authors\":\"C. Pintea, Camelia Chira, D. Dumitrescu\",\"doi\":\"10.1109/SYNASC.2006.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of various meta-heuristics to solve NP-hard problems has great potential to produce good results. Ant algorithms and multi-agent system are proposed to solve a chess problem. The problem is about how to place n rooks on a chessboard so that they are all mutually non-attacking. The introduced algorithms produce reasonable results and have several advantages. A combination between the two meta-heuristics is presented and some possible crossover improvements of the proposed algorithms are suggested\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合各种元启发式方法来解决np困难问题有很大的潜力产生良好的结果。提出了蚂蚁算法和多智能体系统来解决象棋问题。问题是如何在棋盘上放置n辆车,使它们都互不攻击。所介绍的算法产生了合理的结果,并具有若干优点。提出了两种元启发式算法的结合,并对提出的算法提出了一些可能的交叉改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Meta-Heuristics to Solve the Rook Problem
The combination of various meta-heuristics to solve NP-hard problems has great potential to produce good results. Ant algorithms and multi-agent system are proposed to solve a chess problem. The problem is about how to place n rooks on a chessboard so that they are all mutually non-attacking. The introduced algorithms produce reasonable results and have several advantages. A combination between the two meta-heuristics is presented and some possible crossover improvements of the proposed algorithms are suggested
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信