基于fpga的神经网络应用的可参数化激活函数生成器

S. M. H. Ho, C.-H. Dominic Hung, Ho-Cheung Ng, Maolin Wang, Hayden Kwok-Hay So
{"title":"基于fpga的神经网络应用的可参数化激活函数生成器","authors":"S. M. H. Ho, C.-H. Dominic Hung, Ho-Cheung Ng, Maolin Wang, Hayden Kwok-Hay So","doi":"10.1109/FCCM.2017.40","DOIUrl":null,"url":null,"abstract":"Neural network applications on FPGAs at times require arithmetic operators that are either not available in the manufacturer's core library, or are complex operators made up of several elementary functions, requiring more resources than if they were built as single operators. In this work, we built an open-source, parameterized floating-point core generator named NnCore, for operators used as activation functions, and their derivatives. We propose a binary search algorithm to search for minimax-polynomial segments, with adjusting steps for ensuring monotonicity between different segments.","PeriodicalId":124631,"journal":{"name":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Parameterizable Activation Function Generator for FPGA-Based Neural Network Applications\",\"authors\":\"S. M. H. Ho, C.-H. Dominic Hung, Ho-Cheung Ng, Maolin Wang, Hayden Kwok-Hay So\",\"doi\":\"10.1109/FCCM.2017.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network applications on FPGAs at times require arithmetic operators that are either not available in the manufacturer's core library, or are complex operators made up of several elementary functions, requiring more resources than if they were built as single operators. In this work, we built an open-source, parameterized floating-point core generator named NnCore, for operators used as activation functions, and their derivatives. We propose a binary search algorithm to search for minimax-polynomial segments, with adjusting steps for ensuring monotonicity between different segments.\",\"PeriodicalId\":124631,\"journal\":{\"name\":\"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2017.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2017.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

fpga上的神经网络应用有时需要算术运算符,这些运算符要么在制造商的核心库中不可用,要么是由几个基本函数组成的复杂运算符,这比作为单个运算符构建需要更多的资源。在这项工作中,我们构建了一个开源的、参数化的浮点核心生成器,名为NnCore,用于作为激活函数的运算符及其衍生物。我们提出了一种二叉搜索算法来搜索极大多项式段,并通过调整步长来保证不同段之间的单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parameterizable Activation Function Generator for FPGA-Based Neural Network Applications
Neural network applications on FPGAs at times require arithmetic operators that are either not available in the manufacturer's core library, or are complex operators made up of several elementary functions, requiring more resources than if they were built as single operators. In this work, we built an open-source, parameterized floating-point core generator named NnCore, for operators used as activation functions, and their derivatives. We propose a binary search algorithm to search for minimax-polynomial segments, with adjusting steps for ensuring monotonicity between different segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信