浅谈音位混淆的检测与纠正

F. Roewer-Després, A. Yeung, Ilan Kogan
{"title":"浅谈音位混淆的检测与纠正","authors":"F. Roewer-Després, A. Yeung, Ilan Kogan","doi":"10.18653/v1/2021.sigmorphon-1.1","DOIUrl":null,"url":null,"abstract":"Reducing communication breakdown is critical to success in interactive NLP applications, such as dialogue systems. To this end, we propose a confusion-mitigation framework for the detection and remediation of communication breakdown. In this work, as a first step towards implementing this framework, we focus on detecting phonemic sources of confusion. As a proof-of-concept, we evaluate two neural architectures in predicting the probability that a listener will misunderstand phonemes in an utterance. We show that both neural models outperform a weighted n-gram baseline, showing early promise for the broader framework.","PeriodicalId":187165,"journal":{"name":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Detection and Remediation of Phonemic Confusion\",\"authors\":\"F. Roewer-Després, A. Yeung, Ilan Kogan\",\"doi\":\"10.18653/v1/2021.sigmorphon-1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing communication breakdown is critical to success in interactive NLP applications, such as dialogue systems. To this end, we propose a confusion-mitigation framework for the detection and remediation of communication breakdown. In this work, as a first step towards implementing this framework, we focus on detecting phonemic sources of confusion. As a proof-of-concept, we evaluate two neural architectures in predicting the probability that a listener will misunderstand phonemes in an utterance. We show that both neural models outperform a weighted n-gram baseline, showing early promise for the broader framework.\",\"PeriodicalId\":187165,\"journal\":{\"name\":\"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.sigmorphon-1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.sigmorphon-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

减少沟通中断是交互式NLP应用(如对话系统)成功的关键。为此,我们提出了一个用于检测和补救通信故障的混淆缓解框架。在这项工作中,作为实现该框架的第一步,我们专注于检测混淆的音位来源。作为概念验证,我们评估了两种预测听者误解话语中音素的概率的神经结构。我们表明,这两种神经模型都优于加权n-gram基线,显示出更广泛框架的早期前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Detection and Remediation of Phonemic Confusion
Reducing communication breakdown is critical to success in interactive NLP applications, such as dialogue systems. To this end, we propose a confusion-mitigation framework for the detection and remediation of communication breakdown. In this work, as a first step towards implementing this framework, we focus on detecting phonemic sources of confusion. As a proof-of-concept, we evaluate two neural architectures in predicting the probability that a listener will misunderstand phonemes in an utterance. We show that both neural models outperform a weighted n-gram baseline, showing early promise for the broader framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信