{"title":"基于运动的PCA模型动画聚类","authors":"Kivanc Kose, A. Cetin","doi":"10.1109/SIU.2009.5136396","DOIUrl":null,"url":null,"abstract":"In the last few years, there is great increase in capture and representation of real 3-Dimensonal scenes using 3D animation models. The 3D signals are then compressed, transmitted to the client side and reconstructed for the user view. Each step mentioned here opened a new subject in the field of signal processing. While processing these models, using the model as a whole is not the best approach. Therefore clustering the model vertices became a very common method. For example, it is very common to use motion based clustering in animation compression. In this paper a new dynamic model clustering algorithm is proposed. Animation vertices are first put through PCA and partitioned into their eigenvalues and eigenvectors. The eigenvectors found using the proposed method can be called eigentrajectories. Then the dot product of the these eigentrajectories with the trajectories of the animation vertice are found. These coefficients are used to cluster the animation model. The results and the comparisons with a similar approach show that the proposed algorithm is successful.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motion based clustering of model animations using PCA\",\"authors\":\"Kivanc Kose, A. Cetin\",\"doi\":\"10.1109/SIU.2009.5136396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years, there is great increase in capture and representation of real 3-Dimensonal scenes using 3D animation models. The 3D signals are then compressed, transmitted to the client side and reconstructed for the user view. Each step mentioned here opened a new subject in the field of signal processing. While processing these models, using the model as a whole is not the best approach. Therefore clustering the model vertices became a very common method. For example, it is very common to use motion based clustering in animation compression. In this paper a new dynamic model clustering algorithm is proposed. Animation vertices are first put through PCA and partitioned into their eigenvalues and eigenvectors. The eigenvectors found using the proposed method can be called eigentrajectories. Then the dot product of the these eigentrajectories with the trajectories of the animation vertice are found. These coefficients are used to cluster the animation model. The results and the comparisons with a similar approach show that the proposed algorithm is successful.\",\"PeriodicalId\":219938,\"journal\":{\"name\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2009.5136396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion based clustering of model animations using PCA
In the last few years, there is great increase in capture and representation of real 3-Dimensonal scenes using 3D animation models. The 3D signals are then compressed, transmitted to the client side and reconstructed for the user view. Each step mentioned here opened a new subject in the field of signal processing. While processing these models, using the model as a whole is not the best approach. Therefore clustering the model vertices became a very common method. For example, it is very common to use motion based clustering in animation compression. In this paper a new dynamic model clustering algorithm is proposed. Animation vertices are first put through PCA and partitioned into their eigenvalues and eigenvectors. The eigenvectors found using the proposed method can be called eigentrajectories. Then the dot product of the these eigentrajectories with the trajectories of the animation vertice are found. These coefficients are used to cluster the animation model. The results and the comparisons with a similar approach show that the proposed algorithm is successful.