先进的涡流无损检测自动化系统

M. Fahmy, E. Hashish, I. Elshafiey, I. Jannound
{"title":"先进的涡流无损检测自动化系统","authors":"M. Fahmy, E. Hashish, I. Elshafiey, I. Jannound","doi":"10.1109/NRSC.2000.838977","DOIUrl":null,"url":null,"abstract":"Various nondestructive evaluation (NDE) techniques are widely used in the inspection of sub-surface flaws. This paper introduces the results of a research conducted to enhance the performance of eddy-current nondestructive evaluation (ECNDE) by developing an integrated computer based system. Advantages of this system include increasing test speed, while avoiding errors due to human factors. The system can be used to optimize various parameters affecting the performance of inspecting sub-surface cracks including probe configuration and operating frequency range. Inspectability is enhanced by advanced processing of raw eddy current signal. The two-dimensional wavelet transform is applied to eddy current c-scan images to extract feature vectors representing the material flaws. Artificial neural network techniques are then invoked to automate the detection and classification of sub-surface flaws.","PeriodicalId":211510,"journal":{"name":"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Advanced system for automating eddy-current nondestructive evaluation\",\"authors\":\"M. Fahmy, E. Hashish, I. Elshafiey, I. Jannound\",\"doi\":\"10.1109/NRSC.2000.838977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various nondestructive evaluation (NDE) techniques are widely used in the inspection of sub-surface flaws. This paper introduces the results of a research conducted to enhance the performance of eddy-current nondestructive evaluation (ECNDE) by developing an integrated computer based system. Advantages of this system include increasing test speed, while avoiding errors due to human factors. The system can be used to optimize various parameters affecting the performance of inspecting sub-surface cracks including probe configuration and operating frequency range. Inspectability is enhanced by advanced processing of raw eddy current signal. The two-dimensional wavelet transform is applied to eddy current c-scan images to extract feature vectors representing the material flaws. Artificial neural network techniques are then invoked to automate the detection and classification of sub-surface flaws.\",\"PeriodicalId\":211510,\"journal\":{\"name\":\"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2000.838977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000 (IEEE Cat. No.00EX396)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2000.838977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

各种无损检测技术广泛应用于亚表面缺陷的检测。本文介绍了通过开发基于计算机的集成系统来提高涡流无损检测性能的研究成果。该系统的优点是提高了测试速度,同时避免了人为因素造成的错误。该系统可用于优化影响亚表面裂纹检测性能的各种参数,包括探头配置和工作频率范围。通过对原始涡流信号进行高级处理,增强了可检测性。将二维小波变换应用于涡流c扫描图像,提取表征材料缺陷的特征向量。然后利用人工神经网络技术自动检测和分类亚表面缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced system for automating eddy-current nondestructive evaluation
Various nondestructive evaluation (NDE) techniques are widely used in the inspection of sub-surface flaws. This paper introduces the results of a research conducted to enhance the performance of eddy-current nondestructive evaluation (ECNDE) by developing an integrated computer based system. Advantages of this system include increasing test speed, while avoiding errors due to human factors. The system can be used to optimize various parameters affecting the performance of inspecting sub-surface cracks including probe configuration and operating frequency range. Inspectability is enhanced by advanced processing of raw eddy current signal. The two-dimensional wavelet transform is applied to eddy current c-scan images to extract feature vectors representing the material flaws. Artificial neural network techniques are then invoked to automate the detection and classification of sub-surface flaws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信