基于布谷鸟搜索算法的优化ANFIS短期负荷模式预测

M. Mustapha, S. Salisu, A. Ibrahim, Muhammad Dikko Almustapha
{"title":"基于布谷鸟搜索算法的优化ANFIS短期负荷模式预测","authors":"M. Mustapha, S. Salisu, A. Ibrahim, Muhammad Dikko Almustapha","doi":"10.1109/HORA49412.2020.9152879","DOIUrl":null,"url":null,"abstract":"Accurate short-term load forecasting (STLF) depends on proper data selection and model development. The research addresses the problem of data selection based on the energy consumption pattern using correlation analysis and hypothesis test. It also employed the use of Cuckoo Search Optimization algorithm (CSO) to improve Adaptive Network-based Fuzzy Inference System (ANFIS) by replacing the Gradient Descent (GD) algorithm in the backward pass of the classical ANFIS model. The aim is to improve the forecasting error and enhance the forecasting time. Based on the conducted experiment CSO parameters for optimal performance of ANFIS were determined and utilized. Based on the results obtained it is observed that CSO-ANFIS with proposed data selection produced low Root Means Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).","PeriodicalId":166917,"journal":{"name":"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern-based Short-Term Load Forecasting using Optimized ANFIS with Cuckoo Search Algorithm\",\"authors\":\"M. Mustapha, S. Salisu, A. Ibrahim, Muhammad Dikko Almustapha\",\"doi\":\"10.1109/HORA49412.2020.9152879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate short-term load forecasting (STLF) depends on proper data selection and model development. The research addresses the problem of data selection based on the energy consumption pattern using correlation analysis and hypothesis test. It also employed the use of Cuckoo Search Optimization algorithm (CSO) to improve Adaptive Network-based Fuzzy Inference System (ANFIS) by replacing the Gradient Descent (GD) algorithm in the backward pass of the classical ANFIS model. The aim is to improve the forecasting error and enhance the forecasting time. Based on the conducted experiment CSO parameters for optimal performance of ANFIS were determined and utilized. Based on the results obtained it is observed that CSO-ANFIS with proposed data selection produced low Root Means Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).\",\"PeriodicalId\":166917,\"journal\":{\"name\":\"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HORA49412.2020.9152879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA49412.2020.9152879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的短期负荷预测依赖于正确的数据选择和模型开发。本研究采用相关分析和假设检验的方法解决了基于能源消费模式的数据选择问题。利用布谷鸟搜索优化算法(CSO)替代经典模糊推理系统模型的逆向传递中的梯度下降(GD)算法,改进基于自适应网络的模糊推理系统(ANFIS)。目的是改善预测误差,提高预测时间。在实验的基础上,确定并利用了使ANFIS性能最优的CSO参数。根据所获得的结果,观察到采用所提出的数据选择的CSO-ANFIS产生了较低的均方根误差(RMSE)和平均绝对百分比误差(MAPE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern-based Short-Term Load Forecasting using Optimized ANFIS with Cuckoo Search Algorithm
Accurate short-term load forecasting (STLF) depends on proper data selection and model development. The research addresses the problem of data selection based on the energy consumption pattern using correlation analysis and hypothesis test. It also employed the use of Cuckoo Search Optimization algorithm (CSO) to improve Adaptive Network-based Fuzzy Inference System (ANFIS) by replacing the Gradient Descent (GD) algorithm in the backward pass of the classical ANFIS model. The aim is to improve the forecasting error and enhance the forecasting time. Based on the conducted experiment CSO parameters for optimal performance of ANFIS were determined and utilized. Based on the results obtained it is observed that CSO-ANFIS with proposed data selection produced low Root Means Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信