W AniesYulinda, L. Novia, Melati Tegarina, Nurul Chamidah
{"title":"ANALISIS PENGARUH ANGKA KEMATIAN BAYI TERHADAP ANGKA HARAPAN HIDUP DI PROVINSI JAWA TIMUR BERDASARKAN ESTIMATOR LEAST SQUARE SPINE","authors":"W AniesYulinda, L. Novia, Melati Tegarina, Nurul Chamidah","doi":"10.20473/CONMATHA.V1I1.14775","DOIUrl":null,"url":null,"abstract":"Life expectancy can be used to evaluate the government's performance for improving the welfare of the population in the health sector. Life expectancy is closely related to infant mortality rate. Theoretically, decreasing of infant mortality rate will cause increasing of life expectancy. A statistical method that can be used to model life expectancy is nonparametric regression model based on least square spline estimator. This method provides high flexibility to accommodate pattern of data by using smoothing technique. The best estimated model is order one spline model with one knot based on minimum generalized cross validation (GCV) value of 0.607. Each increasing of one infant mortality rate unit will cause decreasing of life expectancy of  0.2314 for infant mortality rate less than 27, and of  0.0666 for infant mortality rate more than and equals to 27. In addition, based on mean square error (MSE) of 0.492 and R2value of 76.59% for nonparametric model approach compared with MSE of 0.634 and R2 value of 71.8%  for parametric model approach, we conclude that the use of nonparametric model approach based on least square spline estimator is better than that of parametric model approach.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/CONMATHA.V1I1.14775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预期寿命可用于评价政府在改善卫生部门人口福利方面的表现。预期寿命与婴儿死亡率密切相关。从理论上讲,婴儿死亡率的下降会导致预期寿命的增加。基于最小二乘样条估计的非参数回归模型是对寿命进行建模的一种统计方法。该方法采用平滑技术,为适应数据模式提供了很高的灵活性。最优估计模型是基于最小广义交叉验证(GCV)值0.607的一阶一节样条模型。婴儿死亡率每增加一个单位,死亡率低于27岁的婴儿预期寿命减少0.2314岁,死亡率大于等于27岁的婴儿预期寿命减少0.0666岁。此外,基于非参数模型方法的均方误差(MSE)为0.492,R2值为76.59%,而参数模型方法的MSE为0.634,R2值为71.8%,我们得出使用基于最小二乘样条估计的非参数模型方法优于参数模型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS PENGARUH ANGKA KEMATIAN BAYI TERHADAP ANGKA HARAPAN HIDUP DI PROVINSI JAWA TIMUR BERDASARKAN ESTIMATOR LEAST SQUARE SPINE
Life expectancy can be used to evaluate the government's performance for improving the welfare of the population in the health sector. Life expectancy is closely related to infant mortality rate. Theoretically, decreasing of infant mortality rate will cause increasing of life expectancy. A statistical method that can be used to model life expectancy is nonparametric regression model based on least square spline estimator. This method provides high flexibility to accommodate pattern of data by using smoothing technique. The best estimated model is order one spline model with one knot based on minimum generalized cross validation (GCV) value of 0.607. Each increasing of one infant mortality rate unit will cause decreasing of life expectancy of  0.2314 for infant mortality rate less than 27, and of  0.0666 for infant mortality rate more than and equals to 27. In addition, based on mean square error (MSE) of 0.492 and R2value of 76.59% for nonparametric model approach compared with MSE of 0.634 and R2 value of 71.8%  for parametric model approach, we conclude that the use of nonparametric model approach based on least square spline estimator is better than that of parametric model approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信