P. Iles, David A Clausi, Shannon M. Puddister, G. Brodland
{"title":"从组织图像估计的平均细胞方向、形状和大小","authors":"P. Iles, David A Clausi, Shannon M. Puddister, G. Brodland","doi":"10.1109/CRV.2005.22","DOIUrl":null,"url":null,"abstract":"Four computer vision algorithms to measure the average orientation, shape and size of cells in images of biological tissue are proposed and tested. These properties, which can be embodied by an elliptical 'composite cell' are crucial for biomechanical tissue models. To automatically determine these properties is challenging due to the diverse nature of the image data, with tremendous and unpredictable variability in illumination, cell pigmentation, cell shape, and cell boundary visibility. First, a simple edge detection routine is performed on the raw images to locate cell edges and remove pigmentation variation. The edge map is then converted into the magnitude spatial-frequency domain where the spatial patterns of the cells appear as energy impulses. Four candidate methods that analyze the spatial-frequency data to estimate the properties of the composite cell are presented and compared. These methods are: least squares ellipse fitting, correlation, area moments and Gabor filters. Robustness is demonstrated by successful application on a wide variety of real images.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Average cell orientation, shape and size estimated from tissue images\",\"authors\":\"P. Iles, David A Clausi, Shannon M. Puddister, G. Brodland\",\"doi\":\"10.1109/CRV.2005.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Four computer vision algorithms to measure the average orientation, shape and size of cells in images of biological tissue are proposed and tested. These properties, which can be embodied by an elliptical 'composite cell' are crucial for biomechanical tissue models. To automatically determine these properties is challenging due to the diverse nature of the image data, with tremendous and unpredictable variability in illumination, cell pigmentation, cell shape, and cell boundary visibility. First, a simple edge detection routine is performed on the raw images to locate cell edges and remove pigmentation variation. The edge map is then converted into the magnitude spatial-frequency domain where the spatial patterns of the cells appear as energy impulses. Four candidate methods that analyze the spatial-frequency data to estimate the properties of the composite cell are presented and compared. These methods are: least squares ellipse fitting, correlation, area moments and Gabor filters. Robustness is demonstrated by successful application on a wide variety of real images.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"348 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Average cell orientation, shape and size estimated from tissue images
Four computer vision algorithms to measure the average orientation, shape and size of cells in images of biological tissue are proposed and tested. These properties, which can be embodied by an elliptical 'composite cell' are crucial for biomechanical tissue models. To automatically determine these properties is challenging due to the diverse nature of the image data, with tremendous and unpredictable variability in illumination, cell pigmentation, cell shape, and cell boundary visibility. First, a simple edge detection routine is performed on the raw images to locate cell edges and remove pigmentation variation. The edge map is then converted into the magnitude spatial-frequency domain where the spatial patterns of the cells appear as energy impulses. Four candidate methods that analyze the spatial-frequency data to estimate the properties of the composite cell are presented and compared. These methods are: least squares ellipse fitting, correlation, area moments and Gabor filters. Robustness is demonstrated by successful application on a wide variety of real images.