NetceRNA:一种通过竞争内源性rna构建表型特异性调控网络的算法

Mario Flores, Yufei Huang, Yidong Chen
{"title":"NetceRNA:一种通过竞争内源性rna构建表型特异性调控网络的算法","authors":"Mario Flores, Yufei Huang, Yidong Chen","doi":"10.1109/GENSIPS.2013.6735921","DOIUrl":null,"url":null,"abstract":"By using the competing endogenous RNA (ceRNA) concept, we implemented a web-based application TraceRNA. TraceRNA allows us to interactively construct a regulation network for a specific phenotype by using a disease-specific transcriptome data. In this work, we further extend the TraceRNA with a novel algorithm implementation where we examined the microRNA expression derived from same disease type. The proposed algorithm, NetceRNA, finds an optimized network representation under a certain phenotype context by iteratively perturbing the network and measuring the network configuration change with respect to the original ceRNA network. The resulting algorithm outputs an improved network together with a ranked list of genes and miRNAs which are characteristic of the specific phenotype. To illustrate the utility of NetceRNA, gene expression and microRNA expression data of breast cancer study from The Cancer Genome Atlas (TCGA) were used.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NetceRNA: An algorithm for construction of phenotype-specific regulation networks via competing endogenous RNAs\",\"authors\":\"Mario Flores, Yufei Huang, Yidong Chen\",\"doi\":\"10.1109/GENSIPS.2013.6735921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using the competing endogenous RNA (ceRNA) concept, we implemented a web-based application TraceRNA. TraceRNA allows us to interactively construct a regulation network for a specific phenotype by using a disease-specific transcriptome data. In this work, we further extend the TraceRNA with a novel algorithm implementation where we examined the microRNA expression derived from same disease type. The proposed algorithm, NetceRNA, finds an optimized network representation under a certain phenotype context by iteratively perturbing the network and measuring the network configuration change with respect to the original ceRNA network. The resulting algorithm outputs an improved network together with a ranked list of genes and miRNAs which are characteristic of the specific phenotype. To illustrate the utility of NetceRNA, gene expression and microRNA expression data of breast cancer study from The Cancer Genome Atlas (TCGA) were used.\",\"PeriodicalId\":336511,\"journal\":{\"name\":\"2013 IEEE International Workshop on Genomic Signal Processing and Statistics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Workshop on Genomic Signal Processing and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSIPS.2013.6735921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过使用竞争性内源性RNA (ceRNA)概念,我们实现了基于web的应用程序TraceRNA。TraceRNA允许我们通过使用疾病特异性转录组数据来交互式地构建特定表型的调节网络。在这项工作中,我们通过一种新的算法实现进一步扩展了TraceRNA,我们检查了来自相同疾病类型的microRNA表达。提出的算法NetceRNA通过迭代扰动网络并测量相对于原始ceRNA网络的网络配置变化,找到特定表型上下文下的优化网络表示。所得到的算法输出一个改进的网络以及具有特定表型特征的基因和mirna的排序列表。为了说明NetceRNA的作用,我们使用了来自癌症基因组图谱(TCGA)的乳腺癌研究的基因表达和microRNA表达数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NetceRNA: An algorithm for construction of phenotype-specific regulation networks via competing endogenous RNAs
By using the competing endogenous RNA (ceRNA) concept, we implemented a web-based application TraceRNA. TraceRNA allows us to interactively construct a regulation network for a specific phenotype by using a disease-specific transcriptome data. In this work, we further extend the TraceRNA with a novel algorithm implementation where we examined the microRNA expression derived from same disease type. The proposed algorithm, NetceRNA, finds an optimized network representation under a certain phenotype context by iteratively perturbing the network and measuring the network configuration change with respect to the original ceRNA network. The resulting algorithm outputs an improved network together with a ranked list of genes and miRNAs which are characteristic of the specific phenotype. To illustrate the utility of NetceRNA, gene expression and microRNA expression data of breast cancer study from The Cancer Genome Atlas (TCGA) were used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信