基于模型优化器的电池储能调度强化学习

Gayathri Krishnamoorthy, A. Dubey
{"title":"基于模型优化器的电池储能调度强化学习","authors":"Gayathri Krishnamoorthy, A. Dubey","doi":"10.1109/SmartGridComm51999.2021.9632292","DOIUrl":null,"url":null,"abstract":"Reinforcement learning algorithms have been found useful in solving optimal power flow (OPF) problems in electric power distribution systems. However, the use of largely model-free reinforcement learning algorithms that completely ignore the physics-based modeling of the power grid compromises the optimizer performance and poses scalability challenges. This paper proposes a novel approach to synergistically combine the physics-based models with learning-based algorithms using imitation learning to solve distribution-level OPF problems. Specifically, we propose imitation learning based improvements in deep reinforcement learning (DRL) methods to solve the OPF problem for a specific case of battery storage dispatch in the power distribution systems. The proposed imitation learning algorithm uses the approximate optimal solutions obtained from a linearized model-based OPF solver to provide a good initial policy for the DRL algorithms while improving the training efficiency. The effectiveness of the proposed approach is demonstrated using IEEE 34-bus and 123-bus distribution feeders with numerous distribution-level battery storage systems.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reinforcement Learning for Battery Energy Storage Dispatch augmented with Model-based Optimizer\",\"authors\":\"Gayathri Krishnamoorthy, A. Dubey\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning algorithms have been found useful in solving optimal power flow (OPF) problems in electric power distribution systems. However, the use of largely model-free reinforcement learning algorithms that completely ignore the physics-based modeling of the power grid compromises the optimizer performance and poses scalability challenges. This paper proposes a novel approach to synergistically combine the physics-based models with learning-based algorithms using imitation learning to solve distribution-level OPF problems. Specifically, we propose imitation learning based improvements in deep reinforcement learning (DRL) methods to solve the OPF problem for a specific case of battery storage dispatch in the power distribution systems. The proposed imitation learning algorithm uses the approximate optimal solutions obtained from a linearized model-based OPF solver to provide a good initial policy for the DRL algorithms while improving the training efficiency. The effectiveness of the proposed approach is demonstrated using IEEE 34-bus and 123-bus distribution feeders with numerous distribution-level battery storage systems.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

强化学习算法在解决配电系统的最优潮流(OPF)问题中非常有用。然而,使用大量的无模型强化学习算法,完全忽略了电网的基于物理的建模,损害了优化器的性能,并带来了可扩展性的挑战。本文提出了一种新的方法,将基于物理的模型与基于学习的算法协同结合,使用模仿学习来解决分布级OPF问题。具体而言,我们提出了基于模仿学习的深度强化学习(DRL)方法的改进,以解决配电系统中电池储能调度的特定情况下的OPF问题。本文提出的模仿学习算法利用基于线性化模型的OPF求解器得到的近似最优解,为DRL算法提供了良好的初始策略,同时提高了训练效率。采用IEEE 34总线和123总线配电馈线与多个配电级电池存储系统验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning for Battery Energy Storage Dispatch augmented with Model-based Optimizer
Reinforcement learning algorithms have been found useful in solving optimal power flow (OPF) problems in electric power distribution systems. However, the use of largely model-free reinforcement learning algorithms that completely ignore the physics-based modeling of the power grid compromises the optimizer performance and poses scalability challenges. This paper proposes a novel approach to synergistically combine the physics-based models with learning-based algorithms using imitation learning to solve distribution-level OPF problems. Specifically, we propose imitation learning based improvements in deep reinforcement learning (DRL) methods to solve the OPF problem for a specific case of battery storage dispatch in the power distribution systems. The proposed imitation learning algorithm uses the approximate optimal solutions obtained from a linearized model-based OPF solver to provide a good initial policy for the DRL algorithms while improving the training efficiency. The effectiveness of the proposed approach is demonstrated using IEEE 34-bus and 123-bus distribution feeders with numerous distribution-level battery storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信