{"title":"电子-核自旋相互作用在量子信息处理中的应用潜力","authors":"G. W. Hitt, A. Isakovic","doi":"10.1109/IEEEGCC.2011.5752488","DOIUrl":null,"url":null,"abstract":"Recent experiments have demonstrated that an ensemble of spin polarized electrons can transfer its spin polarization to the spin of the host atomic nuclei in a “spin-friendly” semiconductor like gallium arsenide (GaAs). In this paper, we analyze this process in terms of its efficiency for using natural nuclear spin in a solid state quantum computer. Among the appealing features of the proposed design is the potential to mate it to existing memory technology. We propose a realizable and scalable model of such a device based on growth-implanted quantum dots in a III-V semiconductor matrix and analyze the feasibility of transferring spin polarized information to such a system, keeping it stored in the system and processing it.","PeriodicalId":119104,"journal":{"name":"2011 IEEE GCC Conference and Exhibition (GCC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The potential of electron-nuclear spin interactions for use in quantum information processing\",\"authors\":\"G. W. Hitt, A. Isakovic\",\"doi\":\"10.1109/IEEEGCC.2011.5752488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experiments have demonstrated that an ensemble of spin polarized electrons can transfer its spin polarization to the spin of the host atomic nuclei in a “spin-friendly” semiconductor like gallium arsenide (GaAs). In this paper, we analyze this process in terms of its efficiency for using natural nuclear spin in a solid state quantum computer. Among the appealing features of the proposed design is the potential to mate it to existing memory technology. We propose a realizable and scalable model of such a device based on growth-implanted quantum dots in a III-V semiconductor matrix and analyze the feasibility of transferring spin polarized information to such a system, keeping it stored in the system and processing it.\",\"PeriodicalId\":119104,\"journal\":{\"name\":\"2011 IEEE GCC Conference and Exhibition (GCC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE GCC Conference and Exhibition (GCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEEGCC.2011.5752488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2011.5752488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The potential of electron-nuclear spin interactions for use in quantum information processing
Recent experiments have demonstrated that an ensemble of spin polarized electrons can transfer its spin polarization to the spin of the host atomic nuclei in a “spin-friendly” semiconductor like gallium arsenide (GaAs). In this paper, we analyze this process in terms of its efficiency for using natural nuclear spin in a solid state quantum computer. Among the appealing features of the proposed design is the potential to mate it to existing memory technology. We propose a realizable and scalable model of such a device based on growth-implanted quantum dots in a III-V semiconductor matrix and analyze the feasibility of transferring spin polarized information to such a system, keeping it stored in the system and processing it.