捕获对象子类别的长尾分布

Xiangxin Zhu, Dragomir Anguelov, Deva Ramanan
{"title":"捕获对象子类别的长尾分布","authors":"Xiangxin Zhu, Dragomir Anguelov, Deva Ramanan","doi":"10.1109/CVPR.2014.122","DOIUrl":null,"url":null,"abstract":"We argue that object subcategories follow a long-tail distribution: a few subcategories are common, while many are rare. We describe distributed algorithms for learning large- mixture models that capture long-tail distributions, which are hard to model with current approaches. We introduce a generalized notion of mixtures (or subcategories) that allow for examples to be shared across multiple subcategories. We optimize our models with a discriminative clustering algorithm that searches over mixtures in a distributed, \"brute-force\" fashion. We used our scalable system to train tens of thousands of deformable mixtures for VOC objects. We demonstrate significant performance improvements, particularly for object classes that are characterized by large appearance variation.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"162","resultStr":"{\"title\":\"Capturing Long-Tail Distributions of Object Subcategories\",\"authors\":\"Xiangxin Zhu, Dragomir Anguelov, Deva Ramanan\",\"doi\":\"10.1109/CVPR.2014.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We argue that object subcategories follow a long-tail distribution: a few subcategories are common, while many are rare. We describe distributed algorithms for learning large- mixture models that capture long-tail distributions, which are hard to model with current approaches. We introduce a generalized notion of mixtures (or subcategories) that allow for examples to be shared across multiple subcategories. We optimize our models with a discriminative clustering algorithm that searches over mixtures in a distributed, \\\"brute-force\\\" fashion. We used our scalable system to train tens of thousands of deformable mixtures for VOC objects. We demonstrate significant performance improvements, particularly for object classes that are characterized by large appearance variation.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"162\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 162

摘要

我们认为对象子类别遵循长尾分布:少数子类别是常见的,而许多子类别是罕见的。我们描述了用于学习捕获长尾分布的大型混合模型的分布式算法,这些模型很难用当前的方法建模。我们引入了混合(或子类别)的广义概念,它允许在多个子类别之间共享示例。我们用一种判别聚类算法来优化我们的模型,这种算法以一种分布式的、“蛮力”的方式搜索混合物。我们使用我们的可扩展系统来训练成千上万的VOC对象的可变形混合物。我们展示了显著的性能改进,特别是对于那些以巨大的外观变化为特征的对象类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing Long-Tail Distributions of Object Subcategories
We argue that object subcategories follow a long-tail distribution: a few subcategories are common, while many are rare. We describe distributed algorithms for learning large- mixture models that capture long-tail distributions, which are hard to model with current approaches. We introduce a generalized notion of mixtures (or subcategories) that allow for examples to be shared across multiple subcategories. We optimize our models with a discriminative clustering algorithm that searches over mixtures in a distributed, "brute-force" fashion. We used our scalable system to train tens of thousands of deformable mixtures for VOC objects. We demonstrate significant performance improvements, particularly for object classes that are characterized by large appearance variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信