{"title":"利用获胜条件的布尔组合扩展有限记忆确定性","authors":"Stéphane Le Roux, A. Pauly, Mickael Randour","doi":"10.4230/LIPIcs.FSTTCS.2018.38","DOIUrl":null,"url":null,"abstract":"We study finite-memory (FM) determinacy in games on finite graphs, a central question for applications in controller synthesis, as FM strategies correspond to implementable controllers. We establish general conditions under which FM strategies suffice to play optimally, even in a broad multi-objective setting. We show that our framework encompasses important classes of games from the literature, and permits to go further, using a unified approach. While such an approach cannot match ad-hoc proofs with regard to tightness of memory bounds, it has two advantages: first, it gives a widely-applicable criterion for FM determinacy; second, it helps to understand the cornerstones of FM determinacy, which are often hidden but common in proofs for specific (combinations of) winning conditions.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"2 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Extending finite-memory determinacy by Boolean combination of winning conditions\",\"authors\":\"Stéphane Le Roux, A. Pauly, Mickael Randour\",\"doi\":\"10.4230/LIPIcs.FSTTCS.2018.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study finite-memory (FM) determinacy in games on finite graphs, a central question for applications in controller synthesis, as FM strategies correspond to implementable controllers. We establish general conditions under which FM strategies suffice to play optimally, even in a broad multi-objective setting. We show that our framework encompasses important classes of games from the literature, and permits to go further, using a unified approach. While such an approach cannot match ad-hoc proofs with regard to tightness of memory bounds, it has two advantages: first, it gives a widely-applicable criterion for FM determinacy; second, it helps to understand the cornerstones of FM determinacy, which are often hidden but common in proofs for specific (combinations of) winning conditions.\",\"PeriodicalId\":175000,\"journal\":{\"name\":\"Foundations of Software Technology and Theoretical Computer Science\",\"volume\":\"2 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Software Technology and Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending finite-memory determinacy by Boolean combination of winning conditions
We study finite-memory (FM) determinacy in games on finite graphs, a central question for applications in controller synthesis, as FM strategies correspond to implementable controllers. We establish general conditions under which FM strategies suffice to play optimally, even in a broad multi-objective setting. We show that our framework encompasses important classes of games from the literature, and permits to go further, using a unified approach. While such an approach cannot match ad-hoc proofs with regard to tightness of memory bounds, it has two advantages: first, it gives a widely-applicable criterion for FM determinacy; second, it helps to understand the cornerstones of FM determinacy, which are often hidden but common in proofs for specific (combinations of) winning conditions.