{"title":"基于能量排序矩阵铅笔法的实时机电模式识别","authors":"Rahul Rane, A. Pandey, F. Kazi","doi":"10.1109/UPEC50034.2021.9548194","DOIUrl":null,"url":null,"abstract":"Large areas of modern power systems are inter-connected for improved power pooling, resulting in higher system inertia. On the other hand, it provides the capability of long-distance transmission of power. Thus, increasing the potential of tie-lines to run at near-maximum capacity. The probability of inter-area oscillations between two areas increases as tie lines are operated closer to full capacity, and this is particularly prevalent near high load density areas. Inter-area stability analysis is becoming more difficult as the current power system becomes more interconnected. This paper implements the energy-sorted Matrix Pencil Method (MPM) on a real-time simulation testbed to perform an online estimation of Low-Frequency Electromechanical Oscillations (LFEOs) present in a power system that is complex and highly interconnected and also implements an oscillation detection method on Phasor Measurement Units (PMUs) data to ensure that energy-sorted MPM is be applied to the relevant data type. As a result, the estimation of modal parameters can be utilized further with confidence and promptly. The proposed process is evaluated on a Klein-Rogers-Kundur test case, and the outcome of the simulation is presented which justifies the effectiveness of energy-sorted MPM in real-time LEFOs.","PeriodicalId":325389,"journal":{"name":"2021 56th International Universities Power Engineering Conference (UPEC)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-Time Electromechanical Mode Identification through Energy-sorted Matrix Pencil Method\",\"authors\":\"Rahul Rane, A. Pandey, F. Kazi\",\"doi\":\"10.1109/UPEC50034.2021.9548194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large areas of modern power systems are inter-connected for improved power pooling, resulting in higher system inertia. On the other hand, it provides the capability of long-distance transmission of power. Thus, increasing the potential of tie-lines to run at near-maximum capacity. The probability of inter-area oscillations between two areas increases as tie lines are operated closer to full capacity, and this is particularly prevalent near high load density areas. Inter-area stability analysis is becoming more difficult as the current power system becomes more interconnected. This paper implements the energy-sorted Matrix Pencil Method (MPM) on a real-time simulation testbed to perform an online estimation of Low-Frequency Electromechanical Oscillations (LFEOs) present in a power system that is complex and highly interconnected and also implements an oscillation detection method on Phasor Measurement Units (PMUs) data to ensure that energy-sorted MPM is be applied to the relevant data type. As a result, the estimation of modal parameters can be utilized further with confidence and promptly. The proposed process is evaluated on a Klein-Rogers-Kundur test case, and the outcome of the simulation is presented which justifies the effectiveness of energy-sorted MPM in real-time LEFOs.\",\"PeriodicalId\":325389,\"journal\":{\"name\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC50034.2021.9548194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC50034.2021.9548194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Electromechanical Mode Identification through Energy-sorted Matrix Pencil Method
Large areas of modern power systems are inter-connected for improved power pooling, resulting in higher system inertia. On the other hand, it provides the capability of long-distance transmission of power. Thus, increasing the potential of tie-lines to run at near-maximum capacity. The probability of inter-area oscillations between two areas increases as tie lines are operated closer to full capacity, and this is particularly prevalent near high load density areas. Inter-area stability analysis is becoming more difficult as the current power system becomes more interconnected. This paper implements the energy-sorted Matrix Pencil Method (MPM) on a real-time simulation testbed to perform an online estimation of Low-Frequency Electromechanical Oscillations (LFEOs) present in a power system that is complex and highly interconnected and also implements an oscillation detection method on Phasor Measurement Units (PMUs) data to ensure that energy-sorted MPM is be applied to the relevant data type. As a result, the estimation of modal parameters can be utilized further with confidence and promptly. The proposed process is evaluated on a Klein-Rogers-Kundur test case, and the outcome of the simulation is presented which justifies the effectiveness of energy-sorted MPM in real-time LEFOs.