通过快速音频源定位的闭塞视频跟踪

Eleonora D'Arca, Ashley Hughes, N. Robertson, J. Hopgood
{"title":"通过快速音频源定位的闭塞视频跟踪","authors":"Eleonora D'Arca, Ashley Hughes, N. Robertson, J. Hopgood","doi":"10.1109/ICIP.2013.6738548","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel audio-visual speaker detection and localisation algorithm. Audio source position estimates are computed by a novel stochastic region contraction (SRC) audio search algorithm for accurate speaker localisation. This audio search algorithm is aided by available video information (stochastic region contraction with height estimation (SRC-HE)) which estimates head heights over the whole scene and gives a speed improvement of 56% over SRC. We finally combine audio and video data in a Kalman filter (KF) which fuses person-position likelihoods and tracks the speaker. Our system is composed of a single video camera and 16 microphones. We validate the approach on the problem of video occlusion i.e. two people having a conversation have to be detected and localised at a distance (as in surveillance scenarios vs. enclosed meeting rooms). We show video occlusion can be resolved and speakers can be correctly detected/localised in real data. Moreover, SRC-HE based joint audio-video (AV) speaker tracking outperforms the one based on the original SRC by 16% and 4% in terms of multi object tracking precision (MOTP) and multi object tracking accuracy (MOTA). Speaker change detection improves by 11% over SRC.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Video tracking through occlusions by fast audio source localisation\",\"authors\":\"Eleonora D'Arca, Ashley Hughes, N. Robertson, J. Hopgood\",\"doi\":\"10.1109/ICIP.2013.6738548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel audio-visual speaker detection and localisation algorithm. Audio source position estimates are computed by a novel stochastic region contraction (SRC) audio search algorithm for accurate speaker localisation. This audio search algorithm is aided by available video information (stochastic region contraction with height estimation (SRC-HE)) which estimates head heights over the whole scene and gives a speed improvement of 56% over SRC. We finally combine audio and video data in a Kalman filter (KF) which fuses person-position likelihoods and tracks the speaker. Our system is composed of a single video camera and 16 microphones. We validate the approach on the problem of video occlusion i.e. two people having a conversation have to be detected and localised at a distance (as in surveillance scenarios vs. enclosed meeting rooms). We show video occlusion can be resolved and speakers can be correctly detected/localised in real data. Moreover, SRC-HE based joint audio-video (AV) speaker tracking outperforms the one based on the original SRC by 16% and 4% in terms of multi object tracking precision (MOTP) and multi object tracking accuracy (MOTA). Speaker change detection improves by 11% over SRC.\",\"PeriodicalId\":388385,\"journal\":{\"name\":\"2013 IEEE International Conference on Image Processing\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种新的视听说话人检测与定位算法。通过一种新的随机区域收缩(SRC)音频搜索算法计算音源位置估计,以实现准确的说话人定位。该音频搜索算法由可用的视频信息(随机区域收缩与高度估计(SRC- he))辅助,该算法估计整个场景的头部高度,速度比SRC提高56%。最后,我们将音频和视频数据结合在一个卡尔曼滤波器(KF)中,该滤波器融合了人-位置的可能性并跟踪说话者。我们的系统由一个摄像机和16个麦克风组成。我们验证了视频遮挡问题的方法,即必须在一定距离内检测并定位正在进行对话的两个人(如在监控场景中与封闭的会议室中)。我们展示了视频遮挡可以解决,说话者可以在真实数据中正确检测/定位。此外,基于SRC- he的联合音视频(AV)说话人跟踪在多目标跟踪精度(MOTP)和多目标跟踪精度(MOTA)方面分别比基于原始SRC的联合音视频说话人跟踪提高了16%和4%。说话人变化检测比SRC提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video tracking through occlusions by fast audio source localisation
In this paper we present a novel audio-visual speaker detection and localisation algorithm. Audio source position estimates are computed by a novel stochastic region contraction (SRC) audio search algorithm for accurate speaker localisation. This audio search algorithm is aided by available video information (stochastic region contraction with height estimation (SRC-HE)) which estimates head heights over the whole scene and gives a speed improvement of 56% over SRC. We finally combine audio and video data in a Kalman filter (KF) which fuses person-position likelihoods and tracks the speaker. Our system is composed of a single video camera and 16 microphones. We validate the approach on the problem of video occlusion i.e. two people having a conversation have to be detected and localised at a distance (as in surveillance scenarios vs. enclosed meeting rooms). We show video occlusion can be resolved and speakers can be correctly detected/localised in real data. Moreover, SRC-HE based joint audio-video (AV) speaker tracking outperforms the one based on the original SRC by 16% and 4% in terms of multi object tracking precision (MOTP) and multi object tracking accuracy (MOTA). Speaker change detection improves by 11% over SRC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信