团队Matus和Francesco @ AutoMin 2021:朝着会议的神经总结

Matús Zilinec, F. Re
{"title":"团队Matus和Francesco @ AutoMin 2021:朝着会议的神经总结","authors":"Matús Zilinec, F. Re","doi":"10.21437/automin.2021-6","DOIUrl":null,"url":null,"abstract":"As online meetings are becoming increasingly ubiquitous, there is an increasing demand to record the main outcomes of these meetings for future reference. Automatic summarization of meetings is a challenging, yet relatively unex-plored natural language processing task with a wide range of potential applications. This paper describes our submission to the First Shared Task on Automatic Minuting at Interspeech 2021. In contrast to previous research focused on the summarization of narrated documents, we examine the specifics of bullet-point spoken language summarization on the AutoMin dataset of online meetings in English. Furthermore, we investigate whether existing abstractive summarization systems can be transferred to this new domain. In this regard, we develop a minuting pipeline based on the state-of-the-art PEGASUS summarization model. This includes pre-processing of conversational data, few-shot transfer learning using reference minutes generated by human annotators, filtering and post-processing of the resulting candidate summaries into a suitable bullet-point minutes format. We conclude by evaluating the completeness and shortening aspects of our system, and discuss its limitations and potential future research directions.","PeriodicalId":186820,"journal":{"name":"First Shared Task on Automatic Minuting at Interspeech 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Team Matus and Francesco @ AutoMin 2021: Towards Neural Summarization of Meetings\",\"authors\":\"Matús Zilinec, F. Re\",\"doi\":\"10.21437/automin.2021-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As online meetings are becoming increasingly ubiquitous, there is an increasing demand to record the main outcomes of these meetings for future reference. Automatic summarization of meetings is a challenging, yet relatively unex-plored natural language processing task with a wide range of potential applications. This paper describes our submission to the First Shared Task on Automatic Minuting at Interspeech 2021. In contrast to previous research focused on the summarization of narrated documents, we examine the specifics of bullet-point spoken language summarization on the AutoMin dataset of online meetings in English. Furthermore, we investigate whether existing abstractive summarization systems can be transferred to this new domain. In this regard, we develop a minuting pipeline based on the state-of-the-art PEGASUS summarization model. This includes pre-processing of conversational data, few-shot transfer learning using reference minutes generated by human annotators, filtering and post-processing of the resulting candidate summaries into a suitable bullet-point minutes format. We conclude by evaluating the completeness and shortening aspects of our system, and discuss its limitations and potential future research directions.\",\"PeriodicalId\":186820,\"journal\":{\"name\":\"First Shared Task on Automatic Minuting at Interspeech 2021\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Shared Task on Automatic Minuting at Interspeech 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/automin.2021-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Shared Task on Automatic Minuting at Interspeech 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/automin.2021-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着在线会议变得越来越普遍,人们越来越需要记录这些会议的主要结果,以备将来参考。会议自动摘要是一项具有挑战性的自然语言处理任务,具有广泛的潜在应用前景。本文描述了我们在Interspeech 2021上提交的第一个自动会议记录共享任务。与以往的研究不同,我们在AutoMin的英语在线会议数据集上研究了要点式口语摘要的特点。此外,我们还研究了现有的抽象摘要系统是否可以转移到这个新领域。在这方面,我们开发了一个基于最先进的PEGASUS总结模型的计时管道。这包括对会话数据进行预处理,使用人工注释者生成的参考会议记录进行少量迁移学习,对最终的候选摘要进行过滤和后处理,使其成为合适的要点会议记录格式。最后对系统的完备性和缩短性进行了评价,并讨论了系统的局限性和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Team Matus and Francesco @ AutoMin 2021: Towards Neural Summarization of Meetings
As online meetings are becoming increasingly ubiquitous, there is an increasing demand to record the main outcomes of these meetings for future reference. Automatic summarization of meetings is a challenging, yet relatively unex-plored natural language processing task with a wide range of potential applications. This paper describes our submission to the First Shared Task on Automatic Minuting at Interspeech 2021. In contrast to previous research focused on the summarization of narrated documents, we examine the specifics of bullet-point spoken language summarization on the AutoMin dataset of online meetings in English. Furthermore, we investigate whether existing abstractive summarization systems can be transferred to this new domain. In this regard, we develop a minuting pipeline based on the state-of-the-art PEGASUS summarization model. This includes pre-processing of conversational data, few-shot transfer learning using reference minutes generated by human annotators, filtering and post-processing of the resulting candidate summaries into a suitable bullet-point minutes format. We conclude by evaluating the completeness and shortening aspects of our system, and discuss its limitations and potential future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信