矩形空腔后宽槽孔径场积分方程的数值解

Kari Suneli
{"title":"矩形空腔后宽槽孔径场积分方程的数值解","authors":"Kari Suneli","doi":"10.1109/EUMA.1977.332379","DOIUrl":null,"url":null,"abstract":"A two-dimensional vector integral equation for the tangential electric field distribution in a cavity-backed aperture is presented. The solution of the integral equation for a rectangular cavity by the method of moments is discussed. The expansion and testing functions are pulses in the direction of the electric field and triangles transverse to the direction of the electric field. Finally, the convergence of the solution is considered.","PeriodicalId":369354,"journal":{"name":"1977 7th European Microwave Conference","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1977-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of the Aperture Field Integral Equation for a Wide Slot Backed by a Rectangular Cavity\",\"authors\":\"Kari Suneli\",\"doi\":\"10.1109/EUMA.1977.332379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-dimensional vector integral equation for the tangential electric field distribution in a cavity-backed aperture is presented. The solution of the integral equation for a rectangular cavity by the method of moments is discussed. The expansion and testing functions are pulses in the direction of the electric field and triangles transverse to the direction of the electric field. Finally, the convergence of the solution is considered.\",\"PeriodicalId\":369354,\"journal\":{\"name\":\"1977 7th European Microwave Conference\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1977-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1977 7th European Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUMA.1977.332379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1977 7th European Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUMA.1977.332379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了一个二维矢量积分方程,计算了腔背孔径切向电场分布。讨论了用矩量法求解矩形空腔的积分方程。展开和测试函数是电场方向上的脉冲和与电场方向横向的三角形。最后,考虑了解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of the Aperture Field Integral Equation for a Wide Slot Backed by a Rectangular Cavity
A two-dimensional vector integral equation for the tangential electric field distribution in a cavity-backed aperture is presented. The solution of the integral equation for a rectangular cavity by the method of moments is discussed. The expansion and testing functions are pulses in the direction of the electric field and triangles transverse to the direction of the electric field. Finally, the convergence of the solution is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信