{"title":"等变格发生器和马尔可夫基","authors":"Thomas Kahle, Robert Krone, A. Leykin","doi":"10.1145/2608628.2608646","DOIUrl":null,"url":null,"abstract":"It has been shown recently that monomial maps in a large class respecting the action of the infinite symmetric group have, up to symmetry, finitely generated kernels. We study the simplest nontrivial family in this class: the maps given by a single monomial. Considering the corresponding lattice map, we explicitly construct an equivariant lattice generating set, whose width (the number of variables necessary to write it down) depends linearly on the width of the map. This result is sharp and improves dramatically the previously known upper bound as it does not depend on the degree of the image monomial. In the case of of width two, we construct an explicit finite set of binomials generating the toric ideal up to symmetry. Both width and degree of this generating set are sharply bounded by linear functions in the exponents of the monomial.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Equivariant lattice generators and Markov bases\",\"authors\":\"Thomas Kahle, Robert Krone, A. Leykin\",\"doi\":\"10.1145/2608628.2608646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown recently that monomial maps in a large class respecting the action of the infinite symmetric group have, up to symmetry, finitely generated kernels. We study the simplest nontrivial family in this class: the maps given by a single monomial. Considering the corresponding lattice map, we explicitly construct an equivariant lattice generating set, whose width (the number of variables necessary to write it down) depends linearly on the width of the map. This result is sharp and improves dramatically the previously known upper bound as it does not depend on the degree of the image monomial. In the case of of width two, we construct an explicit finite set of binomials generating the toric ideal up to symmetry. Both width and degree of this generating set are sharply bounded by linear functions in the exponents of the monomial.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It has been shown recently that monomial maps in a large class respecting the action of the infinite symmetric group have, up to symmetry, finitely generated kernels. We study the simplest nontrivial family in this class: the maps given by a single monomial. Considering the corresponding lattice map, we explicitly construct an equivariant lattice generating set, whose width (the number of variables necessary to write it down) depends linearly on the width of the map. This result is sharp and improves dramatically the previously known upper bound as it does not depend on the degree of the image monomial. In the case of of width two, we construct an explicit finite set of binomials generating the toric ideal up to symmetry. Both width and degree of this generating set are sharply bounded by linear functions in the exponents of the monomial.