等变格发生器和马尔可夫基

Thomas Kahle, Robert Krone, A. Leykin
{"title":"等变格发生器和马尔可夫基","authors":"Thomas Kahle, Robert Krone, A. Leykin","doi":"10.1145/2608628.2608646","DOIUrl":null,"url":null,"abstract":"It has been shown recently that monomial maps in a large class respecting the action of the infinite symmetric group have, up to symmetry, finitely generated kernels. We study the simplest nontrivial family in this class: the maps given by a single monomial. Considering the corresponding lattice map, we explicitly construct an equivariant lattice generating set, whose width (the number of variables necessary to write it down) depends linearly on the width of the map. This result is sharp and improves dramatically the previously known upper bound as it does not depend on the degree of the image monomial. In the case of of width two, we construct an explicit finite set of binomials generating the toric ideal up to symmetry. Both width and degree of this generating set are sharply bounded by linear functions in the exponents of the monomial.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Equivariant lattice generators and Markov bases\",\"authors\":\"Thomas Kahle, Robert Krone, A. Leykin\",\"doi\":\"10.1145/2608628.2608646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown recently that monomial maps in a large class respecting the action of the infinite symmetric group have, up to symmetry, finitely generated kernels. We study the simplest nontrivial family in this class: the maps given by a single monomial. Considering the corresponding lattice map, we explicitly construct an equivariant lattice generating set, whose width (the number of variables necessary to write it down) depends linearly on the width of the map. This result is sharp and improves dramatically the previously known upper bound as it does not depend on the degree of the image monomial. In the case of of width two, we construct an explicit finite set of binomials generating the toric ideal up to symmetry. Both width and degree of this generating set are sharply bounded by linear functions in the exponents of the monomial.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

最近已经证明,在一个大的类中,关于无限对称群的作用的单项式映射,在不对称的情况下,具有有限生成核。我们在这门课中学习最简单的非平凡族:由单个单项给出的映射。考虑到相应的点阵映射,我们显式地构造了一个等变点阵生成集,其宽度(写下来所需的变量数)与映射的宽度线性相关。这个结果是尖锐的,并且大大提高了以前已知的上界,因为它不依赖于图像单项的程度。在宽度为2的情况下,我们构造了一个显式有限二项式集,生成了最对称的环形理想。该发电集的宽度和度都由单项式指数中的线性函数严格限定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant lattice generators and Markov bases
It has been shown recently that monomial maps in a large class respecting the action of the infinite symmetric group have, up to symmetry, finitely generated kernels. We study the simplest nontrivial family in this class: the maps given by a single monomial. Considering the corresponding lattice map, we explicitly construct an equivariant lattice generating set, whose width (the number of variables necessary to write it down) depends linearly on the width of the map. This result is sharp and improves dramatically the previously known upper bound as it does not depend on the degree of the image monomial. In the case of of width two, we construct an explicit finite set of binomials generating the toric ideal up to symmetry. Both width and degree of this generating set are sharply bounded by linear functions in the exponents of the monomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信