时间非齐次高斯随机波动模型:大偏差和超粗糙度

Archil Gulisashvili
{"title":"时间非齐次高斯随机波动模型:大偏差和超粗糙度","authors":"Archil Gulisashvili","doi":"10.2139/ssrn.3574337","DOIUrl":null,"url":null,"abstract":"We introduce time-inhomogeneous stochastic volatility models, in which the volatility is described by a nonnegative function of a Volterra type continuous Gaussian process that may have extremely rough sample paths. The drift function and the volatility function are assumed to be time-dependent and locally $\\omega$-continuous for some modulus of continuity $\\omega$. The main results obtained in the paper are sample path and small-noise large deviation principles for the log-price process in a Gaussian model under very mild restrictions. We use these results to study the asymptotic behavior of binary up-and-in barrier options and binary call options.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Time-Inhomogeneous Gaussian Stochastic Volatility Models: Large Deviations and Super Roughness\",\"authors\":\"Archil Gulisashvili\",\"doi\":\"10.2139/ssrn.3574337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce time-inhomogeneous stochastic volatility models, in which the volatility is described by a nonnegative function of a Volterra type continuous Gaussian process that may have extremely rough sample paths. The drift function and the volatility function are assumed to be time-dependent and locally $\\\\omega$-continuous for some modulus of continuity $\\\\omega$. The main results obtained in the paper are sample path and small-noise large deviation principles for the log-price process in a Gaussian model under very mild restrictions. We use these results to study the asymptotic behavior of binary up-and-in barrier options and binary call options.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3574337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3574337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们引入了时间非齐次随机波动率模型,其中波动率由Volterra型连续高斯过程的非负函数描述,该过程可能具有极其粗糙的样本路径。假定漂移函数和波动函数是时间相关的,并且对于连续性的某些模量局部连续。本文得到的主要结果是在非常温和的限制条件下高斯模型中对数价格过程的样本路径和小噪声大偏差原理。我们利用这些结果研究了二元涨跌障碍期权和二元看涨期权的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Inhomogeneous Gaussian Stochastic Volatility Models: Large Deviations and Super Roughness
We introduce time-inhomogeneous stochastic volatility models, in which the volatility is described by a nonnegative function of a Volterra type continuous Gaussian process that may have extremely rough sample paths. The drift function and the volatility function are assumed to be time-dependent and locally $\omega$-continuous for some modulus of continuity $\omega$. The main results obtained in the paper are sample path and small-noise large deviation principles for the log-price process in a Gaussian model under very mild restrictions. We use these results to study the asymptotic behavior of binary up-and-in barrier options and binary call options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信