用Karni-Jaffray定理和随机逼近的棱镜估计主观概率

Yuri P. Pavlov
{"title":"用Karni-Jaffray定理和随机逼近的棱镜估计主观概率","authors":"Yuri P. Pavlov","doi":"10.1109/BdKCSE48644.2019.9010603","DOIUrl":null,"url":null,"abstract":"Theoretical formulations deriving from a theorem of Karni-Jaffray under the light of the Savage and von Neumann theory are discussed in the paper. The main purpose is to develop an approximation based methodology for the assessment of subjective probabilities. The basic information is the decision-maker (DM) preferences explicitly expressed in a cardinal way (‘yes’, ‘no’, ‘no preference’). The elicitation procedure uses the Lpτ pseudo-random Sobol’ sequences and the stochastic approximation approach. The dialog DM-computer is modeled numerically and the results are presented.","PeriodicalId":206080,"journal":{"name":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Subjective Probabilities through the Prism of Karni-Jaffray Theorem and Stochastic Approximation\",\"authors\":\"Yuri P. Pavlov\",\"doi\":\"10.1109/BdKCSE48644.2019.9010603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical formulations deriving from a theorem of Karni-Jaffray under the light of the Savage and von Neumann theory are discussed in the paper. The main purpose is to develop an approximation based methodology for the assessment of subjective probabilities. The basic information is the decision-maker (DM) preferences explicitly expressed in a cardinal way (‘yes’, ‘no’, ‘no preference’). The elicitation procedure uses the Lpτ pseudo-random Sobol’ sequences and the stochastic approximation approach. The dialog DM-computer is modeled numerically and the results are presented.\",\"PeriodicalId\":206080,\"journal\":{\"name\":\"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BdKCSE48644.2019.9010603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BdKCSE48644.2019.9010603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在Savage理论和von Neumann理论的基础上,由Karni-Jaffray定理导出的理论表达式。主要目的是发展一种基于近似的主观概率评估方法。基本信息是以基本方式明确表达的决策者(DM)偏好(“是”、“否”、“无偏好”)。引出程序使用Lpτ伪随机Sobol序列和随机逼近方法。对对话框dm -计算机进行了数值模拟,并给出了模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Subjective Probabilities through the Prism of Karni-Jaffray Theorem and Stochastic Approximation
Theoretical formulations deriving from a theorem of Karni-Jaffray under the light of the Savage and von Neumann theory are discussed in the paper. The main purpose is to develop an approximation based methodology for the assessment of subjective probabilities. The basic information is the decision-maker (DM) preferences explicitly expressed in a cardinal way (‘yes’, ‘no’, ‘no preference’). The elicitation procedure uses the Lpτ pseudo-random Sobol’ sequences and the stochastic approximation approach. The dialog DM-computer is modeled numerically and the results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信