亚硫酸氢盐序列比对的可重构加速

James Arram, W. Luk, P. Jiang
{"title":"亚硫酸氢盐序列比对的可重构加速","authors":"James Arram, W. Luk, P. Jiang","doi":"10.1145/2684746.2689066","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel reconfigurable architecture for accelerating DNA sequence alignment. This architecture is applied to bisulfite sequence alignment, a stage in recently developed bioinformatics pipelines for cancer and non-invasive prenatal diagnosis. Alignment is currently the bottleneck in such pipelines, accounting for over 50% of the total analysis time. Our design, Ramethy (Reconfigurable Acceleration of METHYlation data analysis), performs alignment of short reads with up to two mismatches. Ramethy is based on the FM-index, which we optimise to reduce the number of search steps and improve approximate matching performance. We implement Ramethy on a 1U Maxeler MPC-X1000 data flow node consisting of 8 Altera Stratix-V FPGAs. Measured results show a 14.9 times speedup compared to soap2 running with 16 threads on dual Intel Xeon E5-2650 CPUs, and 3.8 times speedup compared to soap3-dp running on an NVIDIA GTX 580 GPU. Upper-bound performance estimates for the MPC-X1000 indicate a maximum speedup of 88.4 times and 22.6 times compared to soap2 and soap3-dp respectively. In addition to runtime, Ramethy consumes over an order of magnitude lower energy while having accuracy identical to soap2 and soap3-dp, making it a strong candidate for integration into bioinformatics pipelines.","PeriodicalId":388546,"journal":{"name":"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Ramethy: Reconfigurable Acceleration of Bisulfite Sequence Alignment\",\"authors\":\"James Arram, W. Luk, P. Jiang\",\"doi\":\"10.1145/2684746.2689066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel reconfigurable architecture for accelerating DNA sequence alignment. This architecture is applied to bisulfite sequence alignment, a stage in recently developed bioinformatics pipelines for cancer and non-invasive prenatal diagnosis. Alignment is currently the bottleneck in such pipelines, accounting for over 50% of the total analysis time. Our design, Ramethy (Reconfigurable Acceleration of METHYlation data analysis), performs alignment of short reads with up to two mismatches. Ramethy is based on the FM-index, which we optimise to reduce the number of search steps and improve approximate matching performance. We implement Ramethy on a 1U Maxeler MPC-X1000 data flow node consisting of 8 Altera Stratix-V FPGAs. Measured results show a 14.9 times speedup compared to soap2 running with 16 threads on dual Intel Xeon E5-2650 CPUs, and 3.8 times speedup compared to soap3-dp running on an NVIDIA GTX 580 GPU. Upper-bound performance estimates for the MPC-X1000 indicate a maximum speedup of 88.4 times and 22.6 times compared to soap2 and soap3-dp respectively. In addition to runtime, Ramethy consumes over an order of magnitude lower energy while having accuracy identical to soap2 and soap3-dp, making it a strong candidate for integration into bioinformatics pipelines.\",\"PeriodicalId\":388546,\"journal\":{\"name\":\"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2684746.2689066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684746.2689066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文提出了一种新的可重构结构来加速DNA序列比对。该架构应用于亚硫酸氢盐序列比对,这是最近开发的用于癌症和无创产前诊断的生物信息学管道的一个阶段。校准目前是这类管道的瓶颈,占总分析时间的50%以上。我们的设计,Ramethy (Reconfigurable Acceleration of METHYlation data analysis,可重构加速甲基化数据分析),可以对最多两个不匹配的短读进行比对。ramthy是基于fm索引的,我们对其进行了优化,减少了搜索步骤,提高了近似匹配性能。我们在由8个Altera Stratix-V fpga组成的1U Maxeler MPC-X1000数据流节点上实现ramthy。测量结果显示,与在双Intel Xeon E5-2650 cpu上运行16个线程的soap2相比,其速度提高了14.9倍,与在NVIDIA GTX 580 GPU上运行的soap3-dp相比,其速度提高了3.8倍。MPC-X1000的性能上限估计表明,与soap2和soap3-dp相比,MPC-X1000的最大加速分别为88.4倍和22.6倍。除了运行时间外,Ramethy消耗的能量比soap2和soap3-dp低一个数量级,同时具有与soap2和soap3-dp相同的精度,使其成为集成到生物信息学管道中的强大候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramethy: Reconfigurable Acceleration of Bisulfite Sequence Alignment
This paper proposes a novel reconfigurable architecture for accelerating DNA sequence alignment. This architecture is applied to bisulfite sequence alignment, a stage in recently developed bioinformatics pipelines for cancer and non-invasive prenatal diagnosis. Alignment is currently the bottleneck in such pipelines, accounting for over 50% of the total analysis time. Our design, Ramethy (Reconfigurable Acceleration of METHYlation data analysis), performs alignment of short reads with up to two mismatches. Ramethy is based on the FM-index, which we optimise to reduce the number of search steps and improve approximate matching performance. We implement Ramethy on a 1U Maxeler MPC-X1000 data flow node consisting of 8 Altera Stratix-V FPGAs. Measured results show a 14.9 times speedup compared to soap2 running with 16 threads on dual Intel Xeon E5-2650 CPUs, and 3.8 times speedup compared to soap3-dp running on an NVIDIA GTX 580 GPU. Upper-bound performance estimates for the MPC-X1000 indicate a maximum speedup of 88.4 times and 22.6 times compared to soap2 and soap3-dp respectively. In addition to runtime, Ramethy consumes over an order of magnitude lower energy while having accuracy identical to soap2 and soap3-dp, making it a strong candidate for integration into bioinformatics pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信