离线手写识别的随机分段建模

P. Natarajan, Krishna Subramanian, Anurag Bhardwaj, R. Prasad
{"title":"离线手写识别的随机分段建模","authors":"P. Natarajan, Krishna Subramanian, Anurag Bhardwaj, R. Prasad","doi":"10.1109/ICDAR.2009.278","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach for incorporating structural information into the hidden Markov Modeling (HMM) framework for offline handwriting recognition. Traditionally, structural features have been used in recognition approaches that rely on accurate segmentation of words into smaller units (sub-words or characters). However, such segmentation based approaches do not perform well on real-world handwritten images, because breaks and merges in glyphs typically create new connected components that are not observed in the training data. To mitigate the problem of having to derive accurate segmentation from connected components, we present a novel framework where the HMM based recognition system trained on shorter-span features is used to generate the 2-D character images (the “Stochastic Segments”), and then another classifier that uses structural features extracted from the stochastic character segments generates a new set of scores. Finally, the scores from the HMM system and from structural matching are used in combination to generate a hypothesis that is better than the results from either the HMM or from structural matching alone. We demonstrate the efficacy of our approach by reporting experimental results on a large corpus of handwritten Arabic documents.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Stochastic Segment Modeling for Offline Handwriting Recognition\",\"authors\":\"P. Natarajan, Krishna Subramanian, Anurag Bhardwaj, R. Prasad\",\"doi\":\"10.1109/ICDAR.2009.278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach for incorporating structural information into the hidden Markov Modeling (HMM) framework for offline handwriting recognition. Traditionally, structural features have been used in recognition approaches that rely on accurate segmentation of words into smaller units (sub-words or characters). However, such segmentation based approaches do not perform well on real-world handwritten images, because breaks and merges in glyphs typically create new connected components that are not observed in the training data. To mitigate the problem of having to derive accurate segmentation from connected components, we present a novel framework where the HMM based recognition system trained on shorter-span features is used to generate the 2-D character images (the “Stochastic Segments”), and then another classifier that uses structural features extracted from the stochastic character segments generates a new set of scores. Finally, the scores from the HMM system and from structural matching are used in combination to generate a hypothesis that is better than the results from either the HMM or from structural matching alone. We demonstrate the efficacy of our approach by reporting experimental results on a large corpus of handwritten Arabic documents.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们提出了一种将结构信息整合到隐马尔可夫建模(HMM)框架中的新方法,用于离线手写识别。传统上,结构特征被用于识别方法,这些方法依赖于将单词准确地分割成更小的单位(子词或字符)。然而,这种基于分割的方法在真实的手写图像上表现不佳,因为符号中的中断和合并通常会创建新的连接组件,而这些组件在训练数据中没有观察到。为了减轻必须从连接的组件中获得准确分割的问题,我们提出了一种新的框架,其中基于HMM的识别系统使用短跨度特征训练来生成二维字符图像(“随机片段”),然后另一个分类器使用从随机字符片段中提取的结构特征生成一组新的分数。最后,将HMM系统的分数和结构匹配的分数结合使用,生成一个比单独使用HMM或结构匹配的结果更好的假设。我们通过在大量手写阿拉伯语文档的语料库上报告实验结果来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Segment Modeling for Offline Handwriting Recognition
In this paper, we present a novel approach for incorporating structural information into the hidden Markov Modeling (HMM) framework for offline handwriting recognition. Traditionally, structural features have been used in recognition approaches that rely on accurate segmentation of words into smaller units (sub-words or characters). However, such segmentation based approaches do not perform well on real-world handwritten images, because breaks and merges in glyphs typically create new connected components that are not observed in the training data. To mitigate the problem of having to derive accurate segmentation from connected components, we present a novel framework where the HMM based recognition system trained on shorter-span features is used to generate the 2-D character images (the “Stochastic Segments”), and then another classifier that uses structural features extracted from the stochastic character segments generates a new set of scores. Finally, the scores from the HMM system and from structural matching are used in combination to generate a hypothesis that is better than the results from either the HMM or from structural matching alone. We demonstrate the efficacy of our approach by reporting experimental results on a large corpus of handwritten Arabic documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信