27.5 28nm UTBB FDSOI集成delta-sigma波束形成器用于三维光声成像的像素-间距匹配超声接收器

Man-Chia Chen, A. Perez, Sri-Rajasekhar Kothapalli, P. Cathelin, A. Cathelin, S. Gambhir, B. Murmann
{"title":"27.5 28nm UTBB FDSOI集成delta-sigma波束形成器用于三维光声成像的像素-间距匹配超声接收器","authors":"Man-Chia Chen, A. Perez, Sri-Rajasekhar Kothapalli, P. Cathelin, A. Cathelin, S. Gambhir, B. Murmann","doi":"10.1109/ISSCC.2017.7870458","DOIUrl":null,"url":null,"abstract":"A variety of emerging applications in medical ultrasound rely on 3D volumetric imaging, calling for dense 2D transducer arrays with thousands of elements. Due to this high channel count, the traditional per-element cable interface used for 1D arrays is no longer viable. To address this issue, recent work has proven the viability of flip-chip bonding [1] or direct transducer integration [2]. This shifts the burden to a CMOS substrate, which must provide dense signal conditioning and processing before the massively parallel image data can be pushed off chip. A common approach for data reduction is to employ subarray beamforming (BF), which applies delay and sum operations within a group of pixels. To implement such functionality within the tight pixel pitch, prior works have implemented the delays using simple S/H circuits [2] or analog filters [3], and typically suffer from a combination of issues related to limited delay, coarse delay resolution and limited SNR.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"27.5 A pixel-pitch-matched ultrasound receiver for 3D photoacoustic imaging with integrated delta-sigma beamformer in 28nm UTBB FDSOI\",\"authors\":\"Man-Chia Chen, A. Perez, Sri-Rajasekhar Kothapalli, P. Cathelin, A. Cathelin, S. Gambhir, B. Murmann\",\"doi\":\"10.1109/ISSCC.2017.7870458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of emerging applications in medical ultrasound rely on 3D volumetric imaging, calling for dense 2D transducer arrays with thousands of elements. Due to this high channel count, the traditional per-element cable interface used for 1D arrays is no longer viable. To address this issue, recent work has proven the viability of flip-chip bonding [1] or direct transducer integration [2]. This shifts the burden to a CMOS substrate, which must provide dense signal conditioning and processing before the massively parallel image data can be pushed off chip. A common approach for data reduction is to employ subarray beamforming (BF), which applies delay and sum operations within a group of pixels. To implement such functionality within the tight pixel pitch, prior works have implemented the delays using simple S/H circuits [2] or analog filters [3], and typically suffer from a combination of issues related to limited delay, coarse delay resolution and limited SNR.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"244 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

医学超声中的各种新兴应用都依赖于3D体积成像,这需要具有数千个元件的密集2D换能器阵列。由于这种高通道数,用于一维阵列的传统单单元电缆接口不再可行。为了解决这个问题,最近的工作已经证明了倒装芯片键合[1]或直接换能器集成[2]的可行性。这将负担转移到CMOS衬底上,在大规模并行图像数据被推出芯片之前,CMOS衬底必须提供密集的信号调理和处理。数据缩减的一种常用方法是采用子阵列波束形成(BF),它在一组像素内应用延迟和求和操作。为了在紧凑的像素间距内实现这样的功能,之前的工作已经使用简单的S/H电路[2]或模拟滤波器[3]来实现延迟,并且通常遭受与有限延迟,粗延迟分辨率和有限信噪比相关的问题的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
27.5 A pixel-pitch-matched ultrasound receiver for 3D photoacoustic imaging with integrated delta-sigma beamformer in 28nm UTBB FDSOI
A variety of emerging applications in medical ultrasound rely on 3D volumetric imaging, calling for dense 2D transducer arrays with thousands of elements. Due to this high channel count, the traditional per-element cable interface used for 1D arrays is no longer viable. To address this issue, recent work has proven the viability of flip-chip bonding [1] or direct transducer integration [2]. This shifts the burden to a CMOS substrate, which must provide dense signal conditioning and processing before the massively parallel image data can be pushed off chip. A common approach for data reduction is to employ subarray beamforming (BF), which applies delay and sum operations within a group of pixels. To implement such functionality within the tight pixel pitch, prior works have implemented the delays using simple S/H circuits [2] or analog filters [3], and typically suffer from a combination of issues related to limited delay, coarse delay resolution and limited SNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信