{"title":"改进的升压逆变器拓扑结构用于补偿三相系统中的不平衡和非线性负载","authors":"S. Panda, S. K. Kollimalla, M. Mishra","doi":"10.1109/ICSET.2012.6357423","DOIUrl":null,"url":null,"abstract":"This paper proposes a boost inverter topology to realize the reference currents generated by Instantaneous Symmetrical Component theory. The circuit topology and the switching pattern of the boost inverter boosts up a low voltage DC (e.g. photovoltaic panel or fuel cell) of a sustainable energy source to inject the required filter currents. The proposed boost inverter can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid. In a PV based boost inverter, PV panels of low output voltage can be connected in parallel, and eventually, a panel's defect or malfunction will not affect the operation of the whole system significantly. The boost inverter's switching are controlled by the Power Balance concept. This inverter topology is connected to the Point of Common Coupling (PCC) of the distribution system. The reference waveform generated from instantaneous symmetrical component theory are used further to generate instantaneous boost reference parameters. These boost reference parameters are then tracked by the boost converters to inject the desired filter currents into the corresponding phase.","PeriodicalId":256740,"journal":{"name":"2012 IEEE Third International Conference on Sustainable Energy Technologies (ICSET)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modified boost inverter topology for compensation of unbalanced and nonlinear loads in three phase system\",\"authors\":\"S. Panda, S. K. Kollimalla, M. Mishra\",\"doi\":\"10.1109/ICSET.2012.6357423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a boost inverter topology to realize the reference currents generated by Instantaneous Symmetrical Component theory. The circuit topology and the switching pattern of the boost inverter boosts up a low voltage DC (e.g. photovoltaic panel or fuel cell) of a sustainable energy source to inject the required filter currents. The proposed boost inverter can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid. In a PV based boost inverter, PV panels of low output voltage can be connected in parallel, and eventually, a panel's defect or malfunction will not affect the operation of the whole system significantly. The boost inverter's switching are controlled by the Power Balance concept. This inverter topology is connected to the Point of Common Coupling (PCC) of the distribution system. The reference waveform generated from instantaneous symmetrical component theory are used further to generate instantaneous boost reference parameters. These boost reference parameters are then tracked by the boost converters to inject the desired filter currents into the corresponding phase.\",\"PeriodicalId\":256740,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Sustainable Energy Technologies (ICSET)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Sustainable Energy Technologies (ICSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSET.2012.6357423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Sustainable Energy Technologies (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSET.2012.6357423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modified boost inverter topology for compensation of unbalanced and nonlinear loads in three phase system
This paper proposes a boost inverter topology to realize the reference currents generated by Instantaneous Symmetrical Component theory. The circuit topology and the switching pattern of the boost inverter boosts up a low voltage DC (e.g. photovoltaic panel or fuel cell) of a sustainable energy source to inject the required filter currents. The proposed boost inverter can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid. In a PV based boost inverter, PV panels of low output voltage can be connected in parallel, and eventually, a panel's defect or malfunction will not affect the operation of the whole system significantly. The boost inverter's switching are controlled by the Power Balance concept. This inverter topology is connected to the Point of Common Coupling (PCC) of the distribution system. The reference waveform generated from instantaneous symmetrical component theory are used further to generate instantaneous boost reference parameters. These boost reference parameters are then tracked by the boost converters to inject the desired filter currents into the corresponding phase.