{"title":"航班目的地COVID-19感染风险指数估算(以基什航空目的地为例)","authors":"I. Shafieenejad, S. Ghasemi, M. Siami","doi":"10.30699/ijrrs.3.2.8","DOIUrl":null,"url":null,"abstract":"This paper proposes a risk assessment method for estimating theCOVID-19 Infection risk index in flight destinations based on the pair wise comparison method to solve the problem of health monitoring devices shortage in airlines. In this research, Kish Airlines flight destinations are considered as a case study. By considering the importance of continuing air travel during COVID-19 pandemic, one of the most effective ways for decreasing the risk of infection to COVID-19 in air travel is establishing health monitoring stations at the airport gates. Because of the enormous number of airports and airline routes, nationwide coverage of them by the establishment of the health monitoring stations is unimaginable. Therefore, in this paper, the pair wise comparison method used for evaluating COVID-19 infection risk index in selected flight destinations and to evaluate the optimal policy for allocation of health monitoring equipment in Kish Airline destinations a geostatistical map is designed based on the calculated infection risk score. Keyword: COVID-19; Infection Risk index; Risk assessment model; Pair wise comparison. Nomenclature and units The Notation to be used in this paper listed as follows: The probability parameter superiority Systems step number The probability of selected member winning in the comparison process The numerical value of the input parameter","PeriodicalId":395350,"journal":{"name":"International Journal of Reliability, Risk and Safety: Theory and Application","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Infection Risk Index Estimation in Flight Destinations (case study: Kish Air destinations)\",\"authors\":\"I. Shafieenejad, S. Ghasemi, M. Siami\",\"doi\":\"10.30699/ijrrs.3.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a risk assessment method for estimating theCOVID-19 Infection risk index in flight destinations based on the pair wise comparison method to solve the problem of health monitoring devices shortage in airlines. In this research, Kish Airlines flight destinations are considered as a case study. By considering the importance of continuing air travel during COVID-19 pandemic, one of the most effective ways for decreasing the risk of infection to COVID-19 in air travel is establishing health monitoring stations at the airport gates. Because of the enormous number of airports and airline routes, nationwide coverage of them by the establishment of the health monitoring stations is unimaginable. Therefore, in this paper, the pair wise comparison method used for evaluating COVID-19 infection risk index in selected flight destinations and to evaluate the optimal policy for allocation of health monitoring equipment in Kish Airline destinations a geostatistical map is designed based on the calculated infection risk score. Keyword: COVID-19; Infection Risk index; Risk assessment model; Pair wise comparison. Nomenclature and units The Notation to be used in this paper listed as follows: The probability parameter superiority Systems step number The probability of selected member winning in the comparison process The numerical value of the input parameter\",\"PeriodicalId\":395350,\"journal\":{\"name\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/ijrrs.3.2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability, Risk and Safety: Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/ijrrs.3.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COVID-19 Infection Risk Index Estimation in Flight Destinations (case study: Kish Air destinations)
This paper proposes a risk assessment method for estimating theCOVID-19 Infection risk index in flight destinations based on the pair wise comparison method to solve the problem of health monitoring devices shortage in airlines. In this research, Kish Airlines flight destinations are considered as a case study. By considering the importance of continuing air travel during COVID-19 pandemic, one of the most effective ways for decreasing the risk of infection to COVID-19 in air travel is establishing health monitoring stations at the airport gates. Because of the enormous number of airports and airline routes, nationwide coverage of them by the establishment of the health monitoring stations is unimaginable. Therefore, in this paper, the pair wise comparison method used for evaluating COVID-19 infection risk index in selected flight destinations and to evaluate the optimal policy for allocation of health monitoring equipment in Kish Airline destinations a geostatistical map is designed based on the calculated infection risk score. Keyword: COVID-19; Infection Risk index; Risk assessment model; Pair wise comparison. Nomenclature and units The Notation to be used in this paper listed as follows: The probability parameter superiority Systems step number The probability of selected member winning in the comparison process The numerical value of the input parameter