利用历史作物轮作模式划定农田边界

M. S. Rahman, L. Di, Zhiqi Yu, E. Yu, Junmei Tang, Li Lin, Chen Zhang, Juozas Gaigalas
{"title":"利用历史作物轮作模式划定农田边界","authors":"M. S. Rahman, L. Di, Zhiqi Yu, E. Yu, Junmei Tang, Li Lin, Chen Zhang, Juozas Gaigalas","doi":"10.1109/Agro-Geoinformatics.2019.8820240","DOIUrl":null,"url":null,"abstract":"GIS data layer on crop field boundary has many applications in agricultural research, ecosystem study, crop monitoring, and land management. Crop field boundary mapping through field survey is not time and cost effective for vast agriculture areas. Onscreen digitization on fine-resolution satellite image is also labor-intensive and error-prone. The recent development in image segmentation based on their spectral characteristics is promising for cropland boundary detection. However, processing of large volume multi-band satellite images often required high-performance computation systems. This study utilized crop rotation information for the delineation of field boundaries. In this study, crop field boundaries of Iowa in the United States are extracted using multi-year (2007-2018) CDL data. The process is simple compared to boundary extraction from multi-date remote sensing data. Although this process was unable to distinguish some adjacent fields, the overall accuracy is promising. Utilization of advanced geoprocessing algorithms and tools on polygon correction may improve the result significantly. Extracted field boundaries are validated by superimposing on fine resolution Google Earth images. The result shows that crop field boundaries can easily be extracted with reasonable accuracy using crop rotation information.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Crop Field Boundary Delineation using Historical Crop Rotation Pattern\",\"authors\":\"M. S. Rahman, L. Di, Zhiqi Yu, E. Yu, Junmei Tang, Li Lin, Chen Zhang, Juozas Gaigalas\",\"doi\":\"10.1109/Agro-Geoinformatics.2019.8820240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GIS data layer on crop field boundary has many applications in agricultural research, ecosystem study, crop monitoring, and land management. Crop field boundary mapping through field survey is not time and cost effective for vast agriculture areas. Onscreen digitization on fine-resolution satellite image is also labor-intensive and error-prone. The recent development in image segmentation based on their spectral characteristics is promising for cropland boundary detection. However, processing of large volume multi-band satellite images often required high-performance computation systems. This study utilized crop rotation information for the delineation of field boundaries. In this study, crop field boundaries of Iowa in the United States are extracted using multi-year (2007-2018) CDL data. The process is simple compared to boundary extraction from multi-date remote sensing data. Although this process was unable to distinguish some adjacent fields, the overall accuracy is promising. Utilization of advanced geoprocessing algorithms and tools on polygon correction may improve the result significantly. Extracted field boundaries are validated by superimposing on fine resolution Google Earth images. The result shows that crop field boundaries can easily be extracted with reasonable accuracy using crop rotation information.\",\"PeriodicalId\":143731,\"journal\":{\"name\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

农田边界GIS数据层在农业研究、生态系统研究、作物监测和土地管理等方面有着广泛的应用。对广大农业区来说,通过实地调查来绘制农田边界既不省时又不经济。对高分辨率卫星图像进行屏幕数字化处理也是一项费力且容易出错的工作。近年来基于其光谱特征的图像分割技术的发展为农田边界检测提供了良好的前景。然而,处理大容量多波段卫星图像往往需要高性能的计算系统。本研究利用作物轮作信息划定农田边界。在本研究中,使用多年(2007-2018)CDL数据提取了美国爱荷华州的农田边界。与从多数据遥感数据中提取边界相比,该过程简单。虽然这个过程不能区分一些相邻的区域,但总体精度是有希望的。利用先进的地理处理算法和工具进行多边形校正可以显著改善结果。提取的场边界通过叠加在精细分辨率的Google Earth图像上进行验证。结果表明,利用作物轮作信息可以很容易地提取出具有合理精度的农田边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crop Field Boundary Delineation using Historical Crop Rotation Pattern
GIS data layer on crop field boundary has many applications in agricultural research, ecosystem study, crop monitoring, and land management. Crop field boundary mapping through field survey is not time and cost effective for vast agriculture areas. Onscreen digitization on fine-resolution satellite image is also labor-intensive and error-prone. The recent development in image segmentation based on their spectral characteristics is promising for cropland boundary detection. However, processing of large volume multi-band satellite images often required high-performance computation systems. This study utilized crop rotation information for the delineation of field boundaries. In this study, crop field boundaries of Iowa in the United States are extracted using multi-year (2007-2018) CDL data. The process is simple compared to boundary extraction from multi-date remote sensing data. Although this process was unable to distinguish some adjacent fields, the overall accuracy is promising. Utilization of advanced geoprocessing algorithms and tools on polygon correction may improve the result significantly. Extracted field boundaries are validated by superimposing on fine resolution Google Earth images. The result shows that crop field boundaries can easily be extracted with reasonable accuracy using crop rotation information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信