短普雷斯伯格算术很难

Danny Nguyen, I. Pak
{"title":"短普雷斯伯格算术很难","authors":"Danny Nguyen, I. Pak","doi":"10.1109/FOCS.2017.13","DOIUrl":null,"url":null,"abstract":"We study the computational complexity of short sentences in Presburger arithmetic (SHORT-PA). Here by short we mean sentences with a bounded number of variables, quantifiers, inequalities and Boolean operations; the input consists only of the integer coefficients involved in the linear inequalities. We prove that satisfiability of SHORT-PA sentences with m+2 alternating quantifiers is SigmaP_m-complete or PiP_m-complete, when the first quantifier is exists or forall, respectively. Counting versions and restricted systems are also analyzed.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Short Presburger Arithmetic Is Hard\",\"authors\":\"Danny Nguyen, I. Pak\",\"doi\":\"10.1109/FOCS.2017.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the computational complexity of short sentences in Presburger arithmetic (SHORT-PA). Here by short we mean sentences with a bounded number of variables, quantifiers, inequalities and Boolean operations; the input consists only of the integer coefficients involved in the linear inequalities. We prove that satisfiability of SHORT-PA sentences with m+2 alternating quantifiers is SigmaP_m-complete or PiP_m-complete, when the first quantifier is exists or forall, respectively. Counting versions and restricted systems are also analyzed.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了Presburger算法(short - pa)中短句子的计算复杂度。这里所说的简短是指具有有限数量的变量、量词、不等式和布尔运算的句子;输入仅由线性不等式中涉及的整数系数组成。证明了当第一个量词存在或forall时,具有m+2个交替量词的SHORT-PA句子的可满足性分别为SigmaP_m-complete或PiP_m-complete。并对计数版本和限制系统进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short Presburger Arithmetic Is Hard
We study the computational complexity of short sentences in Presburger arithmetic (SHORT-PA). Here by short we mean sentences with a bounded number of variables, quantifiers, inequalities and Boolean operations; the input consists only of the integer coefficients involved in the linear inequalities. We prove that satisfiability of SHORT-PA sentences with m+2 alternating quantifiers is SigmaP_m-complete or PiP_m-complete, when the first quantifier is exists or forall, respectively. Counting versions and restricted systems are also analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信