用于自然图像分类的颜色和大小图像数据集归一化协议:以番茄作物病理为例研究

Juan F. Molina, R. Gil, C. Bojacá, Gloria Díaz, Hugo Franco
{"title":"用于自然图像分类的颜色和大小图像数据集归一化协议:以番茄作物病理为例研究","authors":"Juan F. Molina, R. Gil, C. Bojacá, Gloria Díaz, Hugo Franco","doi":"10.1109/STSIVA.2013.6644938","DOIUrl":null,"url":null,"abstract":"In computer vision research, the construction of image datasets is a critical process, given the need for robust experimentation frameworks that ensure the quality and validity of the resulting conclusions and performance measurements in each particular study. Therefore, experimental datasets must optimize their statistical, visual and computational properties through an adequate selection of representative and useful visual data, according to the specific research question being addressed. This paper proposes a dataset construction protocol for ad hoc acquired images in a particular Machine Learning application: tomato crop health assessment.","PeriodicalId":359994,"journal":{"name":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Color and size image dataset normalization protocol for natural image classification: A case study in tomato crop pathologies\",\"authors\":\"Juan F. Molina, R. Gil, C. Bojacá, Gloria Díaz, Hugo Franco\",\"doi\":\"10.1109/STSIVA.2013.6644938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer vision research, the construction of image datasets is a critical process, given the need for robust experimentation frameworks that ensure the quality and validity of the resulting conclusions and performance measurements in each particular study. Therefore, experimental datasets must optimize their statistical, visual and computational properties through an adequate selection of representative and useful visual data, according to the specific research question being addressed. This paper proposes a dataset construction protocol for ad hoc acquired images in a particular Machine Learning application: tomato crop health assessment.\",\"PeriodicalId\":359994,\"journal\":{\"name\":\"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2013.6644938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2013.6644938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在计算机视觉研究中,图像数据集的构建是一个关键的过程,因为需要强大的实验框架来确保每个特定研究中得出的结论和性能测量的质量和有效性。因此,实验数据集必须根据所要解决的具体研究问题,通过充分选择具有代表性和有用的视觉数据来优化其统计、视觉和计算特性。本文提出了一种用于特定机器学习应用:番茄作物健康评估的临时获取图像的数据集构建协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color and size image dataset normalization protocol for natural image classification: A case study in tomato crop pathologies
In computer vision research, the construction of image datasets is a critical process, given the need for robust experimentation frameworks that ensure the quality and validity of the resulting conclusions and performance measurements in each particular study. Therefore, experimental datasets must optimize their statistical, visual and computational properties through an adequate selection of representative and useful visual data, according to the specific research question being addressed. This paper proposes a dataset construction protocol for ad hoc acquired images in a particular Machine Learning application: tomato crop health assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信