使用B-WEMA进行外汇预测:布朗双指数平滑的变体

S. Hansun
{"title":"使用B-WEMA进行外汇预测:布朗双指数平滑的变体","authors":"S. Hansun","doi":"10.1109/IAC.2016.7905726","DOIUrl":null,"url":null,"abstract":"A new variant of B-DES (Brown's Double Exponential Smoothing), as a type of classical MA (Moving Averages) method commonly used in time series data forecasting, had been introduced and known as B-WEMA. It has proven to have a better accuracy and robustness level compare to the other moving average methods, such as WMA and B-DES. However, B-WEMA implementation on a real financial time series data such as foreign exchange (FX) had never been done. Therefore, in this research we try to implement B-WEMA as a variant of MA method on FX forecasting and compare the results with other moving average methods using the MSE and MAPE forecast error measurements criteria. Results from the experiments conducted show that B-WEMA has a better accuracy level compared to WMA and B-DES methods.","PeriodicalId":404904,"journal":{"name":"2016 International Conference on Informatics and Computing (ICIC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"FX forecasting using B-WEMA: Variant of Brown's Double Exponential Smoothing\",\"authors\":\"S. Hansun\",\"doi\":\"10.1109/IAC.2016.7905726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new variant of B-DES (Brown's Double Exponential Smoothing), as a type of classical MA (Moving Averages) method commonly used in time series data forecasting, had been introduced and known as B-WEMA. It has proven to have a better accuracy and robustness level compare to the other moving average methods, such as WMA and B-DES. However, B-WEMA implementation on a real financial time series data such as foreign exchange (FX) had never been done. Therefore, in this research we try to implement B-WEMA as a variant of MA method on FX forecasting and compare the results with other moving average methods using the MSE and MAPE forecast error measurements criteria. Results from the experiments conducted show that B-WEMA has a better accuracy level compared to WMA and B-DES methods.\",\"PeriodicalId\":404904,\"journal\":{\"name\":\"2016 International Conference on Informatics and Computing (ICIC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Informatics and Computing (ICIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAC.2016.7905726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAC.2016.7905726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

作为时间序列数据预测中常用的经典移动平均线(MA)方法,引入了B-DES (Brown’s Double Exponential Smoothing)的一种新形式,称为B-WEMA。事实证明,与WMA和B-DES等其他移动平均方法相比,该方法具有更好的准确性和鲁棒性。然而,B-WEMA在外汇(FX)等真实金融时间序列数据上的实现从未完成过。因此,在本研究中,我们尝试将B-WEMA作为MA方法的一种变体来实现外汇预测,并使用MSE和MAPE预测误差测量标准将结果与其他移动平均方法进行比较。实验结果表明,与WMA和B-DES方法相比,B-WEMA方法具有更高的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FX forecasting using B-WEMA: Variant of Brown's Double Exponential Smoothing
A new variant of B-DES (Brown's Double Exponential Smoothing), as a type of classical MA (Moving Averages) method commonly used in time series data forecasting, had been introduced and known as B-WEMA. It has proven to have a better accuracy and robustness level compare to the other moving average methods, such as WMA and B-DES. However, B-WEMA implementation on a real financial time series data such as foreign exchange (FX) had never been done. Therefore, in this research we try to implement B-WEMA as a variant of MA method on FX forecasting and compare the results with other moving average methods using the MSE and MAPE forecast error measurements criteria. Results from the experiments conducted show that B-WEMA has a better accuracy level compared to WMA and B-DES methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信