使用运动跟踪传感器和机器学习算法对KUKA youBot进行手势控制的方案

Rubén E. Nogales, Franklin Mayorga, Javier Vargas
{"title":"使用运动跟踪传感器和机器学习算法对KUKA youBot进行手势控制的方案","authors":"Rubén E. Nogales, Franklin Mayorga, Javier Vargas","doi":"10.23919/cisti54924.2022.9820218","DOIUrl":null,"url":null,"abstract":"This paper presents a proposal for real-time hand gesture recognition for both dynamic and static gestures. For gesture detection, a dataset is obtained using capture sensors such as Leap Motion and Myo armband. The training process is managed by stages of data acquisition, preprocessing, feature extraction, and classification. In this context, in the classification stage, we determine the machine learning algorithms studies through mathematical model investigations. These algorithms allow to determine the real-time processing of hand gesture types and transfer them to a KUKA youBot for control. An application programming interface with ROS (Robot Operating System) is used for the communication process between the sensors and the robot. Finally, a hand gesture control environment is created after obtaining the training data set for the control of the KUKA youBot to test the remote operation with machine learning algorithms.","PeriodicalId":187896,"journal":{"name":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"322 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A proposal for Hand gesture control applied to the KUKA youBot using motion tracker sensors and machine learning algorithms\",\"authors\":\"Rubén E. Nogales, Franklin Mayorga, Javier Vargas\",\"doi\":\"10.23919/cisti54924.2022.9820218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a proposal for real-time hand gesture recognition for both dynamic and static gestures. For gesture detection, a dataset is obtained using capture sensors such as Leap Motion and Myo armband. The training process is managed by stages of data acquisition, preprocessing, feature extraction, and classification. In this context, in the classification stage, we determine the machine learning algorithms studies through mathematical model investigations. These algorithms allow to determine the real-time processing of hand gesture types and transfer them to a KUKA youBot for control. An application programming interface with ROS (Robot Operating System) is used for the communication process between the sensors and the robot. Finally, a hand gesture control environment is created after obtaining the training data set for the control of the KUKA youBot to test the remote operation with machine learning algorithms.\",\"PeriodicalId\":187896,\"journal\":{\"name\":\"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)\",\"volume\":\"322 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cisti54924.2022.9820218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cisti54924.2022.9820218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种针对动态和静态手势的实时手势识别方案。对于手势检测,使用Leap Motion和Myo臂带等捕获传感器获得数据集。训练过程分为数据采集、预处理、特征提取和分类四个阶段。在此背景下,在分类阶段,我们通过数学模型调查来确定机器学习算法的研究。这些算法可以确定手势类型的实时处理,并将其传输到KUKA youBot进行控制。传感器与机器人之间的通信过程采用ROS (Robot Operating System)应用程序编程接口。最后,在获得KUKA youBot控制的训练数据集后,创建手势控制环境,利用机器学习算法对远程操作进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proposal for Hand gesture control applied to the KUKA youBot using motion tracker sensors and machine learning algorithms
This paper presents a proposal for real-time hand gesture recognition for both dynamic and static gestures. For gesture detection, a dataset is obtained using capture sensors such as Leap Motion and Myo armband. The training process is managed by stages of data acquisition, preprocessing, feature extraction, and classification. In this context, in the classification stage, we determine the machine learning algorithms studies through mathematical model investigations. These algorithms allow to determine the real-time processing of hand gesture types and transfer them to a KUKA youBot for control. An application programming interface with ROS (Robot Operating System) is used for the communication process between the sensors and the robot. Finally, a hand gesture control environment is created after obtaining the training data set for the control of the KUKA youBot to test the remote operation with machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信