运用连贯关系为阅读理解生成问题

NLP-TEA@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-3701
Takshak Desai, Parag Dakle, D. Moldovan
{"title":"运用连贯关系为阅读理解生成问题","authors":"Takshak Desai, Parag Dakle, D. Moldovan","doi":"10.18653/v1/W18-3701","DOIUrl":null,"url":null,"abstract":"In this paper, we have proposed a technique for generating complex reading comprehension questions from a discourse that are more useful than factual ones derived from assertions. Our system produces a set of general-level questions using coherence relations and a set of well-defined syntactic transformations on the input text. Generated questions evaluate comprehension abilities like a comprehensive analysis of the text and its structure, correct identification of the author’s intent, a thorough evaluation of stated arguments; and a deduction of the high-level semantic relations that hold between text spans. Experiments performed on the RST-DT corpus allow us to conclude that our system possesses a strong aptitude for generating intricate questions. These questions are capable of effectively assessing a student’s interpretation of the text.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Generating Questions for Reading Comprehension using Coherence Relations\",\"authors\":\"Takshak Desai, Parag Dakle, D. Moldovan\",\"doi\":\"10.18653/v1/W18-3701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have proposed a technique for generating complex reading comprehension questions from a discourse that are more useful than factual ones derived from assertions. Our system produces a set of general-level questions using coherence relations and a set of well-defined syntactic transformations on the input text. Generated questions evaluate comprehension abilities like a comprehensive analysis of the text and its structure, correct identification of the author’s intent, a thorough evaluation of stated arguments; and a deduction of the high-level semantic relations that hold between text spans. Experiments performed on the RST-DT corpus allow us to conclude that our system possesses a strong aptitude for generating intricate questions. These questions are capable of effectively assessing a student’s interpretation of the text.\",\"PeriodicalId\":321264,\"journal\":{\"name\":\"NLP-TEA@ACL\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NLP-TEA@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-3701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出了一种从话语中生成复杂阅读理解问题的技术,这种技术比从断言中导出的事实问题更有用。我们的系统使用连贯关系和一组定义良好的语法转换对输入文本产生一组一般级别的问题。生成的问题评估理解能力,如对文本及其结构的全面分析,对作者意图的正确识别,对陈述论点的彻底评估;并推导出文本之间的高级语义关系。在RST-DT语料库上进行的实验使我们得出结论,我们的系统具有生成复杂问题的强大能力。这些问题能够有效地评估学生对课文的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Questions for Reading Comprehension using Coherence Relations
In this paper, we have proposed a technique for generating complex reading comprehension questions from a discourse that are more useful than factual ones derived from assertions. Our system produces a set of general-level questions using coherence relations and a set of well-defined syntactic transformations on the input text. Generated questions evaluate comprehension abilities like a comprehensive analysis of the text and its structure, correct identification of the author’s intent, a thorough evaluation of stated arguments; and a deduction of the high-level semantic relations that hold between text spans. Experiments performed on the RST-DT corpus allow us to conclude that our system possesses a strong aptitude for generating intricate questions. These questions are capable of effectively assessing a student’s interpretation of the text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信