基于CIELAB色彩空间和Census非参数变换的局部立体匹配算法

Juan Du, Huan Zhao, Sheng Xu
{"title":"基于CIELAB色彩空间和Census非参数变换的局部立体匹配算法","authors":"Juan Du, Huan Zhao, Sheng Xu","doi":"10.1109/ICCA.2019.8899939","DOIUrl":null,"url":null,"abstract":"In order to meet the demand of stereo matching in low-texture areas and improve the matching accuracy, a stereo matching algorithm based on CIElab color space and Census non-parametric transformation is proposed in this paper. The algorithm is able to improve the traditional adaptive algorithm by selecting the absolute gray level difference in CIELab color space instead of in RGB space. Census non-parametric transformation introduced the similarity measurement method by replacing the gray value of the central pixel point with the pixel relationship between the central pixel and its neighborhood. Finally, we performed disparity post-processing for left-right consistency detection, sub-pixel enhancement and median filter. Experimental results show that the proposed algorithm can effectively improve the matching accuracy, enhance the robustness of stereo matching, and improve the blocking effect of traditional algorithms in low-texture areas.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Stereo Matching Algorithm Based on CIELAB Color Space and Census Non-parametric Transformation\",\"authors\":\"Juan Du, Huan Zhao, Sheng Xu\",\"doi\":\"10.1109/ICCA.2019.8899939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the demand of stereo matching in low-texture areas and improve the matching accuracy, a stereo matching algorithm based on CIElab color space and Census non-parametric transformation is proposed in this paper. The algorithm is able to improve the traditional adaptive algorithm by selecting the absolute gray level difference in CIELab color space instead of in RGB space. Census non-parametric transformation introduced the similarity measurement method by replacing the gray value of the central pixel point with the pixel relationship between the central pixel and its neighborhood. Finally, we performed disparity post-processing for left-right consistency detection, sub-pixel enhancement and median filter. Experimental results show that the proposed algorithm can effectively improve the matching accuracy, enhance the robustness of stereo matching, and improve the blocking effect of traditional algorithms in low-texture areas.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了满足低纹理区域立体匹配的需求,提高匹配精度,本文提出了一种基于CIElab色彩空间和Census非参数变换的立体匹配算法。该算法改进了传统的自适应算法,在CIELab色彩空间中选择绝对灰度差,而不是在RGB空间中选择。普查非参数变换引入了相似度度量方法,将中心像素点的灰度值替换为中心像素点与其邻域的像素关系。最后,我们对左右一致性检测、亚像素增强和中值滤波进行了视差后处理。实验结果表明,该算法能有效提高匹配精度,增强立体匹配的鲁棒性,改善传统算法在低纹理区域的遮挡效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Stereo Matching Algorithm Based on CIELAB Color Space and Census Non-parametric Transformation
In order to meet the demand of stereo matching in low-texture areas and improve the matching accuracy, a stereo matching algorithm based on CIElab color space and Census non-parametric transformation is proposed in this paper. The algorithm is able to improve the traditional adaptive algorithm by selecting the absolute gray level difference in CIELab color space instead of in RGB space. Census non-parametric transformation introduced the similarity measurement method by replacing the gray value of the central pixel point with the pixel relationship between the central pixel and its neighborhood. Finally, we performed disparity post-processing for left-right consistency detection, sub-pixel enhancement and median filter. Experimental results show that the proposed algorithm can effectively improve the matching accuracy, enhance the robustness of stereo matching, and improve the blocking effect of traditional algorithms in low-texture areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信