Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, L. Sha
{"title":"从系统调用分布中学习执行上下文用于智能嵌入式系统异常检测","authors":"Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, L. Sha","doi":"10.1145/3054977.3054999","DOIUrl":null,"url":null,"abstract":"Existing techniques used for anomaly detection do not fully utilize the intrinsic properties of embedded devices. In this paper, we propose a lightweight method for detecting anomalous executions using a distribution of system call frequencies. We use a cluster analysis to learn the legitimate execution contexts of embedded applications and then monitor them at run-time to capture abnormal executions. Our prototype applied to a real-world open-source embedded application shows that the proposed method can effectively detect anomalous executions without relying on sophisticated analyses or affecting the critical execution paths.","PeriodicalId":179120,"journal":{"name":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Learning Execution Contexts from System Call Distribution for Anomaly Detection in Smart Embedded System\",\"authors\":\"Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, L. Sha\",\"doi\":\"10.1145/3054977.3054999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing techniques used for anomaly detection do not fully utilize the intrinsic properties of embedded devices. In this paper, we propose a lightweight method for detecting anomalous executions using a distribution of system call frequencies. We use a cluster analysis to learn the legitimate execution contexts of embedded applications and then monitor them at run-time to capture abnormal executions. Our prototype applied to a real-world open-source embedded application shows that the proposed method can effectively detect anomalous executions without relying on sophisticated analyses or affecting the critical execution paths.\",\"PeriodicalId\":179120,\"journal\":{\"name\":\"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3054977.3054999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3054977.3054999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Execution Contexts from System Call Distribution for Anomaly Detection in Smart Embedded System
Existing techniques used for anomaly detection do not fully utilize the intrinsic properties of embedded devices. In this paper, we propose a lightweight method for detecting anomalous executions using a distribution of system call frequencies. We use a cluster analysis to learn the legitimate execution contexts of embedded applications and then monitor them at run-time to capture abnormal executions. Our prototype applied to a real-world open-source embedded application shows that the proposed method can effectively detect anomalous executions without relying on sophisticated analyses or affecting the critical execution paths.