协同推荐系统的评价方法

P. Cremonesi, R. Turrin, Eugenio Lentini, Matteo Matteucci
{"title":"协同推荐系统的评价方法","authors":"P. Cremonesi, R. Turrin, Eugenio Lentini, Matteo Matteucci","doi":"10.1109/AXMEDIS.2008.13","DOIUrl":null,"url":null,"abstract":"Recommender systems use statistical and knowledge discovery techniques in order to recommend products to users and to mitigate the problem of information overload. The evaluation of the quality of recommender systems has become an important issue for choosing the best learning algorithms. In this paper we propose an evaluation methodology for collaborative filtering (CF) algorithms. This methodology carries out a clear, guided and repeatable evaluation of a CF algorithm. We apply the methodology on two datasets, with different characteristics, using two CF algorithms: singular value decomposition and naive bayesian networks.","PeriodicalId":250298,"journal":{"name":"2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"An Evaluation Methodology for Collaborative Recommender Systems\",\"authors\":\"P. Cremonesi, R. Turrin, Eugenio Lentini, Matteo Matteucci\",\"doi\":\"10.1109/AXMEDIS.2008.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems use statistical and knowledge discovery techniques in order to recommend products to users and to mitigate the problem of information overload. The evaluation of the quality of recommender systems has become an important issue for choosing the best learning algorithms. In this paper we propose an evaluation methodology for collaborative filtering (CF) algorithms. This methodology carries out a clear, guided and repeatable evaluation of a CF algorithm. We apply the methodology on two datasets, with different characteristics, using two CF algorithms: singular value decomposition and naive bayesian networks.\",\"PeriodicalId\":250298,\"journal\":{\"name\":\"2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AXMEDIS.2008.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AXMEDIS.2008.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

推荐系统使用统计和知识发现技术向用户推荐产品并减轻信息过载的问题。评价推荐系统的质量已成为选择最佳学习算法的一个重要问题。本文提出了一种协同过滤(CF)算法的评价方法。该方法对CF算法进行了清晰,指导和可重复的评估。我们将该方法应用于两个具有不同特征的数据集,使用两种CF算法:奇异值分解和朴素贝叶斯网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evaluation Methodology for Collaborative Recommender Systems
Recommender systems use statistical and knowledge discovery techniques in order to recommend products to users and to mitigate the problem of information overload. The evaluation of the quality of recommender systems has become an important issue for choosing the best learning algorithms. In this paper we propose an evaluation methodology for collaborative filtering (CF) algorithms. This methodology carries out a clear, guided and repeatable evaluation of a CF algorithm. We apply the methodology on two datasets, with different characteristics, using two CF algorithms: singular value decomposition and naive bayesian networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信