基于Hermite函数的稀疏交叉项自由时频分布

B. Jokanović, M. Amin
{"title":"基于Hermite函数的稀疏交叉项自由时频分布","authors":"B. Jokanović, M. Amin","doi":"10.1109/ICASSP.2015.7178661","DOIUrl":null,"url":null,"abstract":"Hermite functions are an effective tool for improving the resolution of the single-window spectrogram. In this paper, we analyze the Hermite functions in the ambiguity domain and show that the higher order terms can introduce undesirable cross-terms in the multiwindow spectrogram. The optimal number of Hermite functions depends on the location and spread of signal auto-terms in the ambiguity domain. We apply and compare several sparsity measures, namely ℓ1 norm, the Gini index and the time-frequency concentration measure, for determining the optimal number of Hermite functions, leading to the most desirable time-frequency representation. Among the employed measures, the Gini index provides the sparsest solution. This solution corresponds to a well-concentrated and cross-term reduced time-frequency signature.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse and cross-term free time-frequency distribution based on Hermite functions\",\"authors\":\"B. Jokanović, M. Amin\",\"doi\":\"10.1109/ICASSP.2015.7178661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hermite functions are an effective tool for improving the resolution of the single-window spectrogram. In this paper, we analyze the Hermite functions in the ambiguity domain and show that the higher order terms can introduce undesirable cross-terms in the multiwindow spectrogram. The optimal number of Hermite functions depends on the location and spread of signal auto-terms in the ambiguity domain. We apply and compare several sparsity measures, namely ℓ1 norm, the Gini index and the time-frequency concentration measure, for determining the optimal number of Hermite functions, leading to the most desirable time-frequency representation. Among the employed measures, the Gini index provides the sparsest solution. This solution corresponds to a well-concentrated and cross-term reduced time-frequency signature.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

埃尔米特函数是提高单窗谱图分辨率的有效工具。本文对模糊域的Hermite函数进行了分析,证明了高阶项会在多窗口谱图中引入不期望的交叉项。赫米特函数的最优数量取决于信号自动项在模糊域中的位置和分布。我们应用并比较了几种稀疏度度量,即_1范数、基尼指数和时频浓度度量,以确定Hermite函数的最优数量,从而得到最理想的时频表示。在采用的衡量标准中,基尼指数提供了最稀疏的解决方案。该解决方案对应于一个高度集中和交叉项减少时频特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse and cross-term free time-frequency distribution based on Hermite functions
Hermite functions are an effective tool for improving the resolution of the single-window spectrogram. In this paper, we analyze the Hermite functions in the ambiguity domain and show that the higher order terms can introduce undesirable cross-terms in the multiwindow spectrogram. The optimal number of Hermite functions depends on the location and spread of signal auto-terms in the ambiguity domain. We apply and compare several sparsity measures, namely ℓ1 norm, the Gini index and the time-frequency concentration measure, for determining the optimal number of Hermite functions, leading to the most desirable time-frequency representation. Among the employed measures, the Gini index provides the sparsest solution. This solution corresponds to a well-concentrated and cross-term reduced time-frequency signature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信