{"title":"事实,虚构,还是进化:阿尔茨海默病的机制假说","authors":"J. Pardo","doi":"10.5772/INTECHOPEN.83824","DOIUrl":null,"url":null,"abstract":"The metabolism hypothesis of Alzheimer’s disease (AD) was first proposed in 1975. In normal aging and very mild AD, the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) remained approximately constant, but the metabolism of glucose (CMRglu) declined markedly. This decline in CMRglu identified a specific and primary metabolic defect that triggered downstream cellular cascades evolving into AD and its characteristic neuropathological lesions. These findings led research about AD into the role of insulin resistance that foresaw modern trials of insulin for AD treatment. The metabolism hypothesis evolved over subsequent decades with improved in-vivo measurement of metabolic parameters and AD biomarkers in humans. A more recent model highlights the interrelationships between the default mode network (DMN) and biomarkers such as CMRglu, amyloid, and tau. In other words, metabolic conditions related to sustained cortical activity during aging throughout the lifetime are conducive to the deposition of amyloid. This activity is thought to underlie the “autobiographical self.” These ideas and findings motivate aging and AD-research focus on the biochemistry and cell biology of cerebral metabolism.","PeriodicalId":170702,"journal":{"name":"Redirecting Alzheimer Strategy - Tracing Memory Loss to Self Pathology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fact, Fiction, or Evolution: Mechanism Hypothesis of Alzheimer’s Disease\",\"authors\":\"J. Pardo\",\"doi\":\"10.5772/INTECHOPEN.83824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metabolism hypothesis of Alzheimer’s disease (AD) was first proposed in 1975. In normal aging and very mild AD, the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) remained approximately constant, but the metabolism of glucose (CMRglu) declined markedly. This decline in CMRglu identified a specific and primary metabolic defect that triggered downstream cellular cascades evolving into AD and its characteristic neuropathological lesions. These findings led research about AD into the role of insulin resistance that foresaw modern trials of insulin for AD treatment. The metabolism hypothesis evolved over subsequent decades with improved in-vivo measurement of metabolic parameters and AD biomarkers in humans. A more recent model highlights the interrelationships between the default mode network (DMN) and biomarkers such as CMRglu, amyloid, and tau. In other words, metabolic conditions related to sustained cortical activity during aging throughout the lifetime are conducive to the deposition of amyloid. This activity is thought to underlie the “autobiographical self.” These ideas and findings motivate aging and AD-research focus on the biochemistry and cell biology of cerebral metabolism.\",\"PeriodicalId\":170702,\"journal\":{\"name\":\"Redirecting Alzheimer Strategy - Tracing Memory Loss to Self Pathology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redirecting Alzheimer Strategy - Tracing Memory Loss to Self Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.83824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redirecting Alzheimer Strategy - Tracing Memory Loss to Self Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fact, Fiction, or Evolution: Mechanism Hypothesis of Alzheimer’s Disease
The metabolism hypothesis of Alzheimer’s disease (AD) was first proposed in 1975. In normal aging and very mild AD, the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) remained approximately constant, but the metabolism of glucose (CMRglu) declined markedly. This decline in CMRglu identified a specific and primary metabolic defect that triggered downstream cellular cascades evolving into AD and its characteristic neuropathological lesions. These findings led research about AD into the role of insulin resistance that foresaw modern trials of insulin for AD treatment. The metabolism hypothesis evolved over subsequent decades with improved in-vivo measurement of metabolic parameters and AD biomarkers in humans. A more recent model highlights the interrelationships between the default mode network (DMN) and biomarkers such as CMRglu, amyloid, and tau. In other words, metabolic conditions related to sustained cortical activity during aging throughout the lifetime are conducive to the deposition of amyloid. This activity is thought to underlie the “autobiographical self.” These ideas and findings motivate aging and AD-research focus on the biochemistry and cell biology of cerebral metabolism.