利用特征选择和组合增强Twitter情感分析

Ang Yang, Jun Zhang, Lei Pan, Yang Xiang
{"title":"利用特征选择和组合增强Twitter情感分析","authors":"Ang Yang, Jun Zhang, Lei Pan, Yang Xiang","doi":"10.1109/SocialSec2015.9","DOIUrl":null,"url":null,"abstract":"Tweet sentiment analysis is an important research topic. An accurate and timely analysis report could give good indications on the general public's opinions. After reviewing the current research, we identify the need of effective and efficient methods to conduct tweet sentiment analysis. This paper aims to achieve a high level of performance for classifying tweets with sentiment information. We propose a feasible solution which improves the level of accuracy with good time efficiency. Specifically, we develop a novel feature combination scheme which utilizes the sentiment lexicons and the extracted tweet unigrams of high information gain. We evaluate the performance of six popular machine learning classifiers among which the Naive Bayes Multinomial (NBM) classifier achieves the accuracy rate of 84.60% and takes a few minutes to complete classifying thousands of tweets.","PeriodicalId":121098,"journal":{"name":"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Enhanced Twitter Sentiment Analysis by Using Feature Selection and Combination\",\"authors\":\"Ang Yang, Jun Zhang, Lei Pan, Yang Xiang\",\"doi\":\"10.1109/SocialSec2015.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tweet sentiment analysis is an important research topic. An accurate and timely analysis report could give good indications on the general public's opinions. After reviewing the current research, we identify the need of effective and efficient methods to conduct tweet sentiment analysis. This paper aims to achieve a high level of performance for classifying tweets with sentiment information. We propose a feasible solution which improves the level of accuracy with good time efficiency. Specifically, we develop a novel feature combination scheme which utilizes the sentiment lexicons and the extracted tweet unigrams of high information gain. We evaluate the performance of six popular machine learning classifiers among which the Naive Bayes Multinomial (NBM) classifier achieves the accuracy rate of 84.60% and takes a few minutes to complete classifying thousands of tweets.\",\"PeriodicalId\":121098,\"journal\":{\"name\":\"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialSec2015.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialSec2015.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

微博情感分析是一个重要的研究课题。一份准确及时的分析报告可以很好地反映公众的意见。在回顾了目前的研究之后,我们发现需要有效和高效的方法来进行推文情感分析。本文的目标是实现具有情感信息的推文分类的高水平性能。我们提出了一种可行的解决方案,既提高了精度水平,又具有良好的时间效率。具体而言,我们开发了一种新的特征组合方案,该方案利用情感词汇和提取的高信息增益的推文图。我们评估了六种流行的机器学习分类器的性能,其中朴素贝叶斯多项式(NBM)分类器的准确率达到84.60%,只需几分钟即可完成数千条推文的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Twitter Sentiment Analysis by Using Feature Selection and Combination
Tweet sentiment analysis is an important research topic. An accurate and timely analysis report could give good indications on the general public's opinions. After reviewing the current research, we identify the need of effective and efficient methods to conduct tweet sentiment analysis. This paper aims to achieve a high level of performance for classifying tweets with sentiment information. We propose a feasible solution which improves the level of accuracy with good time efficiency. Specifically, we develop a novel feature combination scheme which utilizes the sentiment lexicons and the extracted tweet unigrams of high information gain. We evaluate the performance of six popular machine learning classifiers among which the Naive Bayes Multinomial (NBM) classifier achieves the accuracy rate of 84.60% and takes a few minutes to complete classifying thousands of tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信